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Abstract

This paper, forming part of a series dedicated to the computational aspects of risk manage-
ment in digital assets, delves into the risk associated with perpetual contracts on digital assets.
We begin by integrating perpetual contracts into a general simulation framework, highlight-
ing the two primary variables: the underlying asset price and the basis multiplier. The study
presents detailed derivations of risk simulation formulas for perpetual futures, encompassing
both linear and inverse contract types. A practical case study is conducted featuring a portfolio
strategy that involves a long position in Bitcoin coupled with a short position in an inverse per-
petual contract on Bitcoin. The paper culminates in a comprehensive analysis of the numerical
results, focusing on risk and gain metrics, and unveils an asymmetric risk profile inherent in
such investment strategies.
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1 Introduction

Perpetual contracts in digital asset markets represent a significant innovation, combining the features
of traditional futures with the added advantage of lacking an expiration date. This key attribute
enables traders to indefinitely speculate on the price movements of an underlying asset without ac-
tual possession, as detailed in reference [1]. The elimination of a fixed maturity date simplifies the
investment process by removing the necessity for contract rollovers and enhances market liquidity
through the trading of a singular contract per underlying asset. Currently prevalent in cryptocur-
rency markets, perpetual contracts are expected to gain traction in various other asset classes.

In a well-functioning perpetual futures market, it is expected that the contract price closely aligns
with the spot price of the underlying asset. Nevertheless, market dynamics can induce temporary
deviations between perpetual contract quotes and spot prices, leading to either a premium (positive
basis) or a discount (negative basis). In contrast to traditional futures, which are constrained by
finite maturities ensuring price convergence at expiry, perpetual futures utilize periodic funding
payments. These payments, which consist of a premium reflecting the price spread and an interest
component based on the interest rate differential, play a crucial role in consistently aligning the
perpetual-contract price with the spot price, thus maintaining the integrity and coherence of the
market.

Linear and inverse contracts In the dynamic realm of perpetual futures, a standard linear
contract typically involves an pair like BTC/USDT, with contract sizes in the base asset (e.g., 1
BTC) and settlements in the quote currency (USDT). However, cryptocurrency trading platforms
have innovated with variations to cater to diverse trading needs and regulatory constraints. A
significant variation is the inverse contract, where the base currency (e.g., BTC) is used for both
margin and settlement and the contract size is in the quote currency (e.g., 10,000 USD). This
allows speculation on crypto-fiat exchange rates without holding fiat currency, a crucial adaptation
for platforms restricted from handling fiat deposits. Another variant, which is not covered in this
work, is the perpetual quanto futures, using a third currency different from the base and quote for
margining and settlement. This adds complexity and new strategic opportunities to trading.

Approaches to the perpetual-contract risk Evaluating perpetual-contract risk can be ap-
proached from two distinct perspectives. The first is a fundamental analysis, which emphasizes the
intrinsic value of the underlying asset and examines the dynamics of supply and demand in the mar-
ket. This method involves modeling both market dynamics and participant behaviors to estimate
the future values of the contracts.

The second method adopts a quantitative perspective. It involves closely observing market quotes
for perpetual contracts and spot prices, utilizing this data to simulate future risk distributions
associated with the contracts. Our focus in this paper is on the quantitative approach, wherein
the contract quote and the spot price serve as the primary drivers for risk simulation analysis. In
order to simplify this approach even further, we assume that the investment period to coincide with
the period of premium payment for the perpetual contracts, i.e. the funding period. Therefore we
perform risk simulations on a period of eight hours, which is the typical funding period for perpetual
contracts.

We begin with a comprehensive examination of the pricing and risk functions specific to perpetual
contracts, with an emphasis on both linear and inverse contract structures. This analysis is crucial
for developing risk simulations that enable us to first calculate the risk distribution and subsequently
derive the risk measures. Our primary objective is to offer a clear and detailed understanding of
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the risks associated with perpetual futures. As such, our attention will be centered on the risk
simulations related to the Profit and Loss (P&L) for three distinct portfolios:

1. A portfolio with a single long position in the underlying digital asset,

2. A portfolio with a single long position in an inverse perpetual futures contract,

3. A mixed portfolio comprising a long position in the spot asset coupled with a short position
in an inverse perpetual futures contract.

For each portfolio type, we will present numerical results encompassing both risk and gain measures.

2 Pricing Functions

In a previous paper, see reference [2], we discussed a generic framework for risk simulations of digital
assets. The framework is based on the assumption that for each financial instrument there exist
a pricing function for their evaluation that depends on a set of parameters and a set of pricing
variables.

Therefore, it is assumed that given any financial instrument we can always write the instrument
price, or value, at a future time t as:

Ft = f (v1, . . . , vn; t) , (1)

where f is the pricing function, v1, . . . , vn, are the pricing variables, and we have implicitly assumed
that the pricing function depends on certain number of fixed parameters, which we have not made
explicit. As shown in reference [2], in order to perform risk simulations, we are interested in com-
puting the projected Profit & Losses (later simply denoted as P&L) at the end of the investment
period:

∆Ft = f (v1, . . . , vn; t)− f
(
v01 , . . . , v

0
n; t

)
, (2)

where v01 , . . . , v
0
n, indicate the values of the pricing variables at the beginning of the investment

period. Usually, the values v01 , . . . , v
0
n, are the latest available market quotes for the pricing variables.

Note that the P&L at the end of the period, as expressed in equation (2), could be either be given
by an explicit analytical formula or by a numerical evaluation.

As mentioned in section 1, we are going to focus on two different types of perpetual contracts: linear
and inverse.

2.1 Linear Perpetual Contracts

In linear perpetual contracts, the contract size is specified in terms of the base asset and the set-
tlement is in the quote asset. The quote asset is typically a stablecoin, such as USDT or USDC,
which is loosely pegged to the value of a fiat currency. For example a linear perpetual contract for
the BTC-USDT pair has a contract size of 1 BTC and is settled in USDT.

The projected P&L at the end of the investment period for a linear perpetual futures is given by:

∆FL
t = Pt − P0 ,

where we assumed a unitary notional and contract size, Pt is the instrument quote at the end of the
investment period, and P0 is the quote at the beginning of the contract. As shown in reference [4],
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the quote of the perpetual futures at time t can always be expressed as the product of the basis
multiplier 1 +Bt and the spot price St, both observed at time t:

Pt = St · (1 +Bt) . (3)

Substituting this expression in the P&L formula, we obtain:

∆FL
t = St · (1 +Bt)− P0 , (4)

which can be identified as the pricing function for the P&L of a portfolio consisting of a single linear
perpetual contract.

From equation (3) we notice that when the basis multiplier is positive the perpetual quote is higher
than the spot price, and when the basis multiplier is negative the perpetual quote is lower.

2.2 Inverse Perpetual Contracts

In inverse perpetual contracts the contract size is specified in terms of the quote asset, and the
settlement is in the base asset. The quote asset is typically a fiat currency, such as USD. For
example an inverse perpetual contract for the BTC-USD pair could have a contract size of 10,000
USD and is settled in BTC.

The projected P&L for an inverse perpetual futures at the end of the investment period is given by:

∆F I
t = Cs ·

(
1− P0

Pt

)
,

where we assumed a unitary notional and a contract size CS , again Pt is the perpetual quote at the
end of the investment period, and P0 is the quote at which the contract is struck. Note that, unlike
the majority of financial instruments, the P&L of inverse perpetuals is not linearly related to their
quote.

Similarly to the linear perpetuals, here we assume that the perpetual quote can always be expressed
as the product of the basis multiplier and the spot price, as shown in equation (3). Therefore,
substituting this expression in the P&L formula, we obtain:

∆F I
t = Cs

[
1− P0

St · (1 +Bt)

]
, (5)

which can be identified as the pricing function for the P&L of a portfolio consisting of a single inverse
perpetual futures.

2.3 Long/Short Portfolios

One of the most common strategies in perpetual trading is to use these instruments as hedging tools
for physical positions. Consider the case in which a large amount of the digital asset, for example
Bitcoin, is held in cold storage and is not easily accessible for trading. When there is market turmoils
the investor may want to protect the value of the asset and may decide to go short on an inverse
perpetual futures with a similar notional as the physical position.

We assume the investors to be long q units of the asset and that he has entered into a short-position
contract in an inverse perpetual futures with a nominal value of

N = q · S0 ,
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where S0 is the spot price of the asset in the quote currency. Note that, in order to simplify the
formulas, here we assume that the contract size to be 1. In this case the portfolio P&L can be
computed as

∆FLS
t = q · (St − S0)− q · S0

[
1− P0

St · (1 +Bt)

]
,

which can be simplified by collecting the q · S0 terms as,

∆FLS
t = q · S0

[
St

S0
− 1 +

P0

St · (1 +Bt)
− 1

]
. (6)

This expression can be considered the pricing function for the P&L of the long-short portfolio.

3 Risk Simulations

While all pricing functions seen so far, i.e. equations (4), (5), and (6), are markedly different, they
all have the spot price and the basis multiplier as their pricing variables. As shown in reference [2],
in order to perform risk simulations, we need to determine the risk drivers so that we can build the
risk functions. While in the general case the pricing variables and the risk drivers may not be the
same, here we assume that there is a one-to-one mapping between the pricing variables and the risk
drivers.

3.1 The Historical Simulation Method

We are going to use the historical simulation method to obtain the risk simulations for the P&L of
the above portfolios. Hence, consider the time series of the spot price and the basis multiplier and
denote them as S0, . . ., SN , and B0, . . ., BN . Here S0 is the most recent observation of the spot
price and SN is the oldest. Similarly, B0 is the most recent observation of the basis multiplier and
BN is the oldest. As described in reference [5], we assume the historical observations to be equally
spaced in time, however they may not necessarily have the same frequency as the investment period.
Indeed we also assume the number h to be the ratio of the investment period to the frequency of
the historical observations, so that if the observations are hourly and the investment period is of one
day, we have h = 24.

Since we are assuming the investment period to coincide with the funding period, in the simulation
discussed in this paper we set h = 8. Given this assumption the perpetual funding is a constant that
is known at the beginning of the investment period and is not subject to any uncertainty. Therefore
we can include the cost of funding in the initial price of the perpetual contract, i.e. P0.

We then define the two simulation variables:

sk = log

(
Sk

Sk+1

)
, (7)

and

bk = log

(
1 +Bk

1 +Bk+1

)
, (8)

for k=0, . . ., N-1. Note that these are the log ratios between the variables at one past period and
those at the next one. As shown in reference [5] for the spot price, we can use the square-root rule
on h to obtain the risk-driver simulations at the investment horizon:

Sk = S0 · exp
(
sk ·

√
h
)
,

1 +Bk = (1 +B0) · exp
(
bk ·

√
h
)
,
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where, again, S0 and B0 are the latest spot price and the basis multiplier.

In order to simplify the formulas that follow we assume that the perpetual contract has been struck
at the beginning of the investment period, so that S0 and B0 are consistent with P0. The general
case in which the contract is struck at a different time is not much more complicated and does not
alter the main results.

In the following subsections, in order to obtain the risk simulations for the portfolio P&L we sub-
stitute Sk for St and Bk for Bt in the P&L pricing functions, thus obtaining the risk functions in
term of the simulation variables sk and bk.

3.2 Risk Function for Linear Perpetuals

The risk simulations for the P&L of the linear perpetual contracts can be obtained by using the
historical simulation method on the P&L defined in equation (4) in terms of the simulation variables
sk and bk:

∆FL
k = Sk · (1 +Bk)− P0

= S0 · exp
(
sk ·

√
h
)
·

·(1 +B0) · exp
(
bk ·

√
h
)
− P0

= P0

{
exp

[
(sk + bk) ·

√
h
]
− 1

}
,

for k = 0, . . ., N -1. This expression defines the risk function for the k-th scenario for cash the profit
& loss ∆FL

k and it can be used, for example, to compute the risk simulation of the P&L of the linear
perpetual contracts.

3.3 Risk Function for Inverse Perpetuals

Similarly we can write the risk function for the k-th scenario for the P&L of an inverse perpetual
contracts by applying the historical simulation method to the pricing function defined in equation (5):

∆F I
k = Cs

[
1− P0

Sk · (1 +Bk)

]
= −Cs

{
exp

[
− (sk + bk) ·

√
h
]
− 1

}
,

again, for k = 0, . . ., N -1. This expression defines the risk function for the k-th cash scenario ∆F I
k,

which can be used to compute the risk simulation of the inverse perpetual contracts.

Note that the expression for the P&L of the linear perpetual contracts and that of the inverse
perpetual contracts, i.e. the expressions for ∆FL

k and ∆F I
k, are very similar, the main difference

being the sign inside the exponential function and the substitution of the constant P0 with the
constant −Cs.

3.4 Risk Function for a Long/Short Portfolio

Finally, we can write the risk function for the k-th scenario for the P&L of a long-short portfolio
with a long position in q units of the spot asset and a short position with a notional of q · S0 in the
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Figure 1: Density distribution of the spot simulation variable sk as defined in equation (7).

inverse perpetual contracts. For simplicity we look at the P&L per unit of notional, i.e. we consider
the P&L as written in equation (6) divided by q · S0:

∆FLS
t

q · S0
=

St

S0
− 1 +

P0

St · (1 +Bt)
− 1 .

By applying the historical simulation method to this function we obtain:

∆FLS
k

q · S0
= exp

[
sk ·

√
h
]
− 1 + (9)

+ exp
[
− (sk + bk) ·

√
h
]
− 1 ,

again, for k = 0, . . ., N -1. This is the risk function for the P&L of the long-short portfolio.

3.5 Consequences of Delta Hedging

We are going to prove here that the long-short portfolio is properly delta-hedged against the spot
price risk. We do this by expanding in Taylor series the expression for the long-short portfolio risk
function defined in equation (9) . Recall that the first-order Taylor expansion of the exponential
function:

exp(x)− 1 ≈ x for small x .

Hence, equation (9) for k = 0, . . ., N -1 becomes:

∆FLS
k

q · S0
≈ sk ·

√
h− (sk + bk) ·

√
h = bk ·

√
h , (10)

where both sk and bk are assumed to be small numbers. Here we notice that the simulation variable
sk is not present in this approximation of the risk function, this means that the risk of the long-
short portfolio is highly sensitive to the basis multiplier volatility, and not so much to the spot price
volatility.
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Figure 2: Density distribution for the basis simulation variable bk as defined in equation (8).

This result can be used also in the opposite way: an investor that wants exposure to the basis
multiplier needs to set up a portfolio with a long position in the digital asset (or a long position in
a linear perpetual futures) and an equivalent short position an inverse perpetual futures.

4 Numerical Results

In this section we show some numerical results for the risk simulations of the P&L of portfolios with
the base asset and an inverse perpetual contracts. We consider the case where the base asset is
Bitcoin and the quote currency is USD. The historical data for both the price and the perpetual
quote were observed hourly for the second half of 2022 and the whole year 2023, for a total of more
then 13,200 observations. This period was chosen because it includes both periods of bear markets
and bull markets. For example it includes the market turmoils due to the collapse of FTX at the
end of 2022 and the recovery of the market in the last quarter of 2023.

We computed the simulation variables sk and bk, as defined in equations (7) and (8) for the given
period. The observed density distributions for sk and bk are plotted in figures 1 and 2 respectively.
We notice that, as expected, both distributions are centered around zero and symmetric. The
distribution for the spot simulation variable sk is wider than the distribution for the basis simulation
variable bk and we computed an annualized volatility of 47.0% for the former and 7.7% for the latter.
The correlation between sk and bk is very small and negative, around -0.06. This stylized fact is
consistent with the results that the basis multiplier can be considered a separate risk driver from
the spot price.

We then proceeded to compute the risk simulations for the P&L of the spot, the perpetual, and the
long-short portfolios.
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VaR 99% VaR 95% CVaR 95% CVaR 99%
Asset 42,625 19,085 33,532 62,464
Inverse perpetual 44,390 19,235 35,121 67,972
Long/short portfolio 4,889 2,144 4,585 10,836

Table 1: Risk measures for the P&L of the spot, the perpetual, and the long-short portfolio. The
risk measures are expressed in USD for a notional amount of 1,000,000 USD.

GaR 99% GaR 95% CGaR 95% CGaR 99%
Asset 43,598 19,670 35,442 67,502
Inverse perpetual 41,370 19,204 33,922 63,184
Long/short portfolio 7,478 2,791 6,140 14,088

Table 2: Gain measures for the P&L of the spot, the perpetual, and the long-short portfolio. The
gain measures are expressed in USD for a notional amount of 1,000,000 USD.

4.1 The Asset Portfolio

First we consider a simple portfolio consisting of a long position in the spot asset. The P&L pricing
function for this portfolio is given by:

∆F S
t = N ·

(
St

S0
− 1

)
,

where N is the notional amount of the portfolio, which in the numerical computations is set to
1,000,000 USD, and St is the spot price at time t. Not the absence of the basis multiplier in this
expression, which is consistent with the fact that the portfolio is not exposed to the basis risk.

Using the historical simulation method we can compute the risk function for the P&L of the spot
portfolio as

∆F S
k = N ·

(
exp

[
sk ·

√
h
]
− 1

)
.

In the numerical simulations described above we computed the risk measures, i.e. the Value-at-Risk
(VaR) and the Conditional Value-at-Risk (CVaR), for both the 95% and 99% confidence levels.
We also computed the gain measures, i.e. the Gain-at-Risk (GaR) and the Conditional Gain-at-
Risk (CGaR), for the same confidence levels. More details on the definitions of these risk and gain
measures can be found in reference [5].

The results of the numerical simulations are shown in tables 1 and 2 where the spot portfolio is
denoted as Asset. We note that in all cases the gain measures are larger than the risk measures,
indicating that the gain is larger than the risk for the spot portfolio.

4.2 The Inverse Perpetual Portfolio

We also performed the P&L simulations for the inverse perpetual portfolio identified by the pricing
function in equation (5). These simulations were also performed using a notional amount of 1,000,000
USD.

The results for the risk measures and the gain measures are also shown in tables 1 and 2. We note
that in all cases the values for the risk measures are larger than the corresponding values for the
gain measures, indicating that the risk is larger than the gain for the inverse perpetual portfolio. We

©Talos Global, Inc. 2024 Page 9



95% GaR/VaR 99% GaR/VaR 95% CGaR/CVaR 99% CGaR/CVaR
Asset 3.1% 2.3% 5.7% 8.1%
Inverse perpetual -0.2% -6.8% -3.4% -7.0%
Long/short portfolio 30.2% 52.9% 33.9% 30.0%

Table 3: Skew results for the P&L of the spot, the perpetual, and the long-short portfolio.

also notice that the risk measures for the inverse perpetual portfolio are always larger than the risk
measures for the spot portfolio, indicating that the risk is larger for the inverse perpetual portfolio
than for the spot portfolio. Conversely the gain measures for the inverse perpetual portfolio are
always smaller than the gain measures for the spot portfolio, indicating that the gain is smaller for
the inverse perpetual portfolio than for the spot portfolio.

4.3 The Long-Short Portfolio

Finally we performed the P&L simulations for the long-short portfolio identified by the pricing
function in equation (6). As discussed in subsection 3.5, because the effects of the delta hedging,
the dispersion of the P&L of the long-short portfolio is expected to be markedly smaller than that
of both the spot and the inverse perpetual portfolios. The numerical results for the risk and gain
measures are also shown in tables 1 and 2. We note that indeed both the risk measures and the
gain measures are smaller than the corresponding measures for the spot and the inverse perpetual
portfolios. Furthermore we notice that the gain measures are much larger than the corresponding
risk measures,

4.4 Gain/Risk Skew

In the previous sections we observed an asymmetry between the risk measures and the gain measures
of the investment strategy involving inverse perpetual contracts. We can quantify this asymmetry
by defining the gain/risk skew. Given a risk measure R and the corresponding gain measure G, we
define the gain/risk skew as:

Skew =
G

R
− 1 , (11)

which is a measure of the asymmetry of the gain/risk profile of the investment strategy. The skew
is positive when the gain is larger than the risk and negative when the risk is larger than the gain.
If the skew is close to zero, the risk and the gain are similar in magnitude. Obviously an investor
would prefer to invest in a strategy with a positive skew.

In table 3 we show the results for the gain/risk skew for the P&L of the spot, the perpetual, and
the long-short portfolio. We notice that the skew is consistently positive, around a few percent, for
the asset portfolio. On the other hand, the skew is small and negative for the inverse perpetual
portfolio. Finally, the skew is large and positive, larger than thirty percent, for the long-short
portfolio. According to these results the long-short portfolio has a well-pronounced skew of the
gain/risk profile, so that an investor might find attractive to invest in this portfolio.

We stress again that these are single-period results and are aimed to estimate the risk and gains
in a period of eight hours, which is the typical funding period for perpetual contracts. In order
to understand the long-term features of the investment strategies one would need to perform a
multi-period analysis, which is beyond the scope of this paper.
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These results might be dependent on the historical data used for the simulations, however we ob-
tained similar results when we used different historical periods. More research is needed to confirm
these results and to understand the reasons behind the skew.

5 Summary and Conclusions

This paper provides a comprehensive exploration of pricing functions and risk simulations for various
types of perpetual contracts and portfolios. We extended the framework discussed in reference [2] to
include specific analyses of linear and inverse perpetual contracts, as well as long/short portfolios.

Our findings demonstrate that the pricing functions for linear and inverse perpetual contracts, see
equations (4) and (5), effectively capture the dynamics of these financial instruments. The historical
simulation method, as applied to these functions, provided valuable insights into the risk profiles of
these contracts. Notably, our simulations revealed distinct risk characteristics for linear and inverse
perpetuals, with the latter exhibiting a more complex risk profile.

The long/short portfolio introduced in section 2, as described by the pricing function of equation
(6), is the most simple portfolio that one can create for a complex strategy that includes assets
and perpetual futures. Our analysis indicates that such portfolios can effectively mitigate spot price
volatility, and show that the portfolio main risk driver is the basis-multiplier volatility. This finding
is particularly relevant for investors who wish to manage their exposure to spot-price risk.

The numerical results described in section 4, underscore the practical applications of our theoretical
framework. The historical data analysis provided real-world context to our theoretical constructs,
and the risk/gain measures offer valuable benchmarks for investors. In that analysis, we observed
that the long/short portfolio has a well-pronounced skew of the gain/risk profile, which is positive
and large, indicating that the gain is larger than the risk for this portfolio.

In conclusion, this paper advances the understanding of perpetual contracts and their applications
in digital asset markets. Our analytical framework and numerical results contribute to more in-
formed decision-making processes for investors and risk managers. Future research might explore
the implications of these findings in different market conditions and for other types of digital assets.
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