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Abstract

This document presents a comprehensive methodology for generating profit and loss (P&L)
scenarios within the Serenity* risk service, focusing on options in digital asset markets. We also 
showcase how this new service can be utilized as a tool for risk management by computing a
number of distribution measures such as Value-at-Risk.

1 Introduction

Since its release in June 2023, the Serenity software has incorporated an advanced risk service
that enables the calculation of various risk measures, including value-at-risk (VaR) and conditional
value-at-risk (CVaR, also known as expected shortfall), for portfolios of digital assets and derivatives
(perpetuals, futures and options).

This document presents a comprehensive methodology for generating the profit and loss (P&L)
scenarios within the risk measure service, with a particular emphasis on options. The methodology
encompasses historical simulations of the spot prices and the volatility surfaces, and it highlights
the importance of conducting full revaluations to accurately capture the nonlinear effects associated
with option positions. Furthermore, we demonstrate how this risk service can be effectively utilized
as a tool for risk management and portfolio optimization.

Related publications This publication is part of a series on digital asset derivatives, which in-
cludes previous papers such as reference [3], on interest rate curves, and reference [4] on construction
of volatility surfaces. Familiarity with the latter paper is assumed when discussing the method for
volatility surface simulations.

Acknowledgment The author would also like to thank Marco Marchioro for insightful discussions
provided during the development stages of the risk service and for helping in the revision of the paper.

2 Historical Simulations

First, we introduce the notation used to describe the historical simulation approach in this document.
For a given scalar variable x such as the spot price, we define:

� x̄, the reference value of x at the current as-of time;

� x0, x1, x2, . . . , xN , the historical data points for x, marked at regular time intervals, covering
a look-back period up to the current time;

� x̃n, the n-th historical scenario for x, generated by perturbing x̄ using xn−1 and xn, where
n = 1, 2, . . . , N ;
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� ∆t, the time interval between two consecutive historical data points xn−1 and xn;

� h, the risk horizon used to scale historical scenarios to represent returns over h,∆t

In Serenity, we generate N = 24×365 = 8, 760 hourly scenarios by default, using hourly data with a
time interval of ∆t = 1 hour over a one-year look-back period. We set h = 24 to represent scenarios
equivalent to returns over a one-day period.

Note: Throughout this document, we assume this default setting unless otherwise stated.

2.1 The Spot Price Simulations

To simulate the n-th historical scenario S̃n for spot price S, we perturb the reference value S̄ using
the historical data points Sn−1 and Sn as follows:

S̃n = S̄

(
Sn

Sn−1

)√h

, n = 1, 2, . . . , N . (1)

Alternatively, we can express this as:

ln S̃n = ln S̄ +
√
h · (lnSn − lnSn−1), (2)

which means that the n-th simulated change is calculated as the difference between the historical
values in the log space, scaled by

√
h.

The square-root-of-time rule The scaling of the historical return by
√
h is consistent with

a fundamental principle of stochastic processes and mathematical finance, which is known as the
square-root-of-time rule. This rule essentially states that the standard deviation of returns scales
with the square root of time. Indeed, consider a random walk model where the changes in the spot
price S are independent and identically distributed. If ∆St is the change in S in time period t,
then the variance of the cumulative change over h periods is given by h · V ar(∆St). The standard
deviation, which is the square root of the variance, thus scales as

√
h. The implication of this

scaling rule is that the potential dispersion of the spot price increases with time, but at a decreasing
rate. In summary, the square-root-of-time scaling in the historical simulation method is crucial for
accurately capturing the time-dependence of price volatility. This feature is consistent with the
empirical observation that price fluctuations tend to grow with the square root of time, and it is
fundamental to many models and methods in mathematical finance.

The scaling factor
√
h is our approach for creating a large number of return scenarios at any time

scale of h hours. For example, figure1 shows hourly BTC-USD spot price time series data over a
one-year period ending on 1st July 2023, in the log space, overlaid with hourly historical changes.
The cumulative distribution of the hourly historical changes is shown in Figure2 (a), together with
those of the daily (h = 24) changes and the hourly changes scaled by

√
24. The plot demonstrates

that the scaling approach is reasonable, as the scaled hourly changes closely track the daily changes.
The Q-Q plot in figure 2 (b) provides another view of the same data, showing that the scaled hourly
changes are distributed similarly to the daily changes.

Alternatively, we may use overlapping h-hour returns, i.e., (lnSn+h − lnSn) in the left-hand size of
(2). However, the resulting scenarios are structurally autocorrelated and thus less meaningful from
a statistical point of view. While this approach is also used in the industry, we prefer our approach
for its simplicity and statistical soundness.
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Figure 1: BTC-USD spot price time series data (blue line, left y-axis) over a one-year period ending
on July 1, 2023. The hourly changes in the log space are also shown as grey lines on the right y-axis.

Figure 2: (a) Cumulative distributions of the changes in the BTC-USD spot price time series data
in Figure1. The changes are calculated as the difference between the historical values in the log
space. The blue solid line represents the hourly changes, the blue dashed line represents the hourly
changes scaled by

√
24, and the orange solid line represents the daily changes. (b) Q-Q plot of the

hourly changes scaled by
√

24 against the daily changes.

2.2 Volatility Surface Simulations

A volatility surface is represented as a two-dimensional function, denoted as σT (K). In this function,
K represents the strike price and T signifies the time-to-expiry. The method used to simulate this
entire surface entails selecting certain points on the surface, referred to as the risk drivers. The
scenarios for these risk drivers are then simulated based on their respective historical variations.
For remaining points on the surface, the scenarios are extrapolated or interpolated from the risk
drivers.

The initial version of the Serenity software employs a single risk driver for simplicity. Specifically,
we use the 3-month at-the-money (ATM) volatility. This is understood in terms of delta-moneyness,
i.e., a 50% delta. While this approach effectively captures risks associated with parallel shifts in the
surface, it fails to account for risks due to alterations along the strike or expiry dimensions, such as
tilting or bending.
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We acknowledge these limitations and plan to enhance future versions of the model. The im-
provements will involve incorporating additional risk drivers to encapsulate the risks currently not
accounted for. This refinement will better enable us to capture a more comprehensive range of risks
present in the volatility surface. Concretely, the n-th volatility surface scenario σ̃T,n(K) is simulated
as

σ̃T,n(K) = σ̄T

(
F̄T

F̃T,n

K

) (
σatm3m
n

σatm3m
n−1

)√h

, (3)

where σ̄T (K) is the reference volatility surface, and F̄T and F̃T,n are the reference and simulated
forward prices, respectively.

Note Recall from the work of reference [4] that the forward price FT can be defined in relation to
the spot price S and the projection rate pT as follows:

FT = S exp(pT T ) (4)

Consequently, the reference forward price F̄T can be expressed using the reference spot price and
the reference projection rate:

F̄T = S̄ exp(p̄T T ).

On the other hand, considering that only the spot price is simulated, the simulated forward price
can be represented as

F̃T,n = S̃n exp(p̄T T ).

Equation (3) consists of two factors: The first factor models the sticky moneyness, which shifts the
reference surface horizontally while preserving its smile shape with respect to the moneyness K/FT

(see, e.g, reference [5] for more details) This approach ensures that the at-the-money volatility of the
simulated surface remains the same as that of the reference surface. The second factor represents the
volatility perturbation modeled using historical changes of the volatility risk driver with a scaling
factor based on the risk horizon h. Here, σatm3m

n is the n-th historical value of the 3-month at-the-
money volatility. For a visual illustration of the effect of each factor and their combined effect, see
figure 3, which shows three different combinations of 50% increase in the forward price and 20%
increase in the volatility driver, and the resulting simulated volatility smiles.

Similar to the spot price simulation model in equation (1), the factor
√
h in equation (3) is to scale

hourly changes to scenarios equivalent to those over a period of h-hours. For example, figure 4 shows
hourly historical time series of the 3-month at-the-money volatility and their changes in the log-space.
The time series data are obtained by interpolating the SVI-parameterized volatility surfaces (see,
e.g., reference [1]) as described in reference [4]. By comparing the cumulative distribution of daily
changes with that of hourly changes scaled by

√
24 in figure 5, we see that the scaling approach is

reasonable: The scaled hourly changes track the daily changes closely, although the former produces
a wider (thus more conservative) distribution.

2.3 Other pricing variables

In the current version of the risk service, pricing variables other than spot prices and volatility
surfaces are not simulated directly.

Perpetual and futures prices Perpetual or futures prices are simulated using historical changes
in the corresponding spot prices while keeping the multiplicative basis unperturbed. Specifically,
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scenario F̃T,n/F̄T

(
σatm3m
n

σatm3m
n−1

)√h

first factor only (orange) 1.5 1.0
second factor only (green) 1.0 1.2

both factors (red) 1.5 1.2

Figure 3: (a) Illustration of volatility simulation model described in equation (3). The reference curve
is the 3-month BTC-USD volatility smile as of 2023-07-01, and the simulated smiles are produced
by applying each of the corresponding scenarios in the table. In this panel, the smiles are expressed
in terms of the strike price. The dashed vertical lines indicate the forward prices before and after
the perturbation. (b) Contains the same information, but the smiles are expressed in terms of the
log value of the strike price.

the n-th simulated perpetual price P̃n is given by

P̃n = P̄

(
Sn

Sn−1

)√h

, n = 1, 2, . . . , N (5)

where P̄ is the reference perpetual price of P and Sn is the n-th historical value of the spot price.
The same approach is used for simulating futures prices.

Incorporating the basis risk into the historical simulation framework presents a practical challenge
in terms of sourcing quality historical price quotes. For instance, perpetual contracts on some
underlying assets may not be liquid, and the basis is expected to vary across different exchanges,
requiring the sourcing of historical price data by exchange. Therefore, incorporating the perpetual
basis into the simulation framework is a topic for future research.

Interest rate curves The current simulation framework does not perturb interest rate curves.
However, in the next version of the model, we may consider enhancing it by including projection
curves derived from Deribit futures quotes. We have access to their historical data as part of our
ongoing process of constructing volatility surfaces.

3 Generating P&L scenarios: option contracts

Having laid out the methods for generating historical scenarios for pricing variables, we can now
apply them to calculate P&L scenarios of a portfolio of digital asset contracts. In this section, we use
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Figure 4: Same as figure 1 but for 3-month at-the-money BTC-USD volatility time series data.

Figure 5: Same as figure 2 but using 3-month at-the-money BTC-USD volatility time series data in
figure 4.

an option contract to illustrate how simulated scenarios affect the P&L distribution of the contract.
Specifically, in addition to the default settings in §2, we assume the as-of-time is 2023-07-01 UTC
and the option contract is a BTC-USD call option with strike price 1.3 times of the spot price. All
reference and historical data are sourced from Cloudwall’s internal database.

3.1 P&L scenarios by pricing variables

Figure 6 illustrates the probability density distributions of the option contract’s profit and loss (P&L)
based on different simulated pricing variables. As expected, the density distribution resulting from
simulating both spot prices and volatility surfaces exhibits the widest spread. It is followed by the
density distribution for spot simulation alone, and then by the density distribution for volatility
simulation alone. The same order is observed in the cumulative distribution plots presented in
Figure (b).

While these plots indicate that simulating spot prices holds greater significance than simulating
volatility surfaces, they also confirm that the impact of simulating volatility surfaces cannot be
overlooked. The influence of volatility simulation is further evident in the scatter plot shown in
Figure 8, which will be discussed in the subsequent section.
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Figure 6: (a) Density distribution of P&L scenarios from the option contract in §3 under different
scopes of simulated pricing variables. (b) Same data but in terms of cumulative distributions. The
horizontal dashed lines represent commonly used confidence levels for risk measurement purposes.

Figure 7: (blue) Number of P&L scenarios between 0.5th and 1.5th percentiles, grouped by weekly
time interval. (red) Same but for scenarios between 98.5th and 99.5th percentiles.

One useful feature of historical simulations is the ability to identify the specific historical time stamps
that contribute to P&L at a given confidence level. To illustrate this, figure 7 presents the time
stamps that contribute to the P&L scenarios near the 1st and 99th percentiles. The bar chart for
the 1% (99%) confidence interval is generated by counting the hourly historical time stamps that
result in P&Ls falling between the 0.5th (98.5th) and 1.5th (99.5th) percentiles within each weekly
time interval.

Notably, it is unsurprising to observe that there is a week in November 2022 (March 2023) with
the highest number of P&L dates for the 1% (99%) confidence interval. These occurrences can be
attributed to specific events, such as the FTX fraud event in November 2022 and the SVB default
in March 2023.1

3.2 Full revaluations on P&L scenarios

When dealing with nonlinear products like options, it is essential to conduct full revaluations of
the portfolio for each scenario to obtain accurate P&L outcomes. Linear approximations, such as
delta approximation, are insufficient for this purpose. Figure 8 depicts the P&L distributions of the
option contract based on whether full revaluations are performed or not.2

1November 2022: FTX fraud event, March 2023: SVB default.
2Options are valued using the Black-Scholes-Merton formula. See the seminal Black-Scholes paper in reference [2].
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Figure 8: (a) Comparison of the P&L distribution using the full revaluation approach (orange) with
that using the first-order delta approximation (grey) assuming only the spot price is simulated.
The complete version (blue) of using the full revaluation and simulation of both the spot price and
the volatility surface is also shown as a benchmark. (b) Scatterplots of P&L scenarios in terms of
simulated spot price changes.

Comparing the density distributions, the distribution for the delta approximation is narrower than
that obtained from full revaluation with spot price simulations alone. This indicates that the full
revaluation approach captures the nonlinear effects associated with changes in spot price more
accurately, which are not accounted for by the delta approximation. The scatterplot presented in
Figure 8 provides clear evidence of how full revaluation captures the nonlinear impact in relation to
spot price fluctuations, which is not adequately captured by the delta approximation. Additionally,
the plot highlights the influence of volatility surface simulations (depicted by the blue dots), resulting
in a more scattered and wider P&L distribution, as observed in the previous section.

4 Risk measures and application to risk management

Once a set of P&L scenarios is generated, we can calculate various distribution measures that offer
insights into specific characteristics of the P&L distribution. For example, risk measures, such as
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR, a.k.a. expected shortfall), focus on
potential losses at a given, or above, confidence level. Appendix A provides additional details on
the definition of commonly used distribution measures, including VaR and CVaR. Investors and
portfolio managers employ a combination of these measures to make informed decisions for effective
risk management.

To illustrate the utilization of distribution measures in the context of risk management, let’s consider
a portfolio comprising 1 BTC and 10 ETH tokens. Figure 9 (a) displays the risk measure output
for this portfolio, computed on July 18th. Suppose our objective is to manage portfolio risk by
minimizing potential losses without significantly impacting the potential for gains. Achieving this
goal would be challenging if only linear products were available, as they often affect both loss and
gain potentials simultaneously. However, this can be accomplished by holding a put option position.
For instance, figure 9 (b) demonstrates the output after incorporating 4 units of BTC-USD put
options with a strike price of 28,000 and an expiration date of 2023-08-23. The loss measures (CVaR
and VaR) are substantially reduced, while the gain measures (CGaR and GaR) are not significantly
affected. It’s important to note that this risk reduction comes with the cost of the option premium,
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portfolio (a)

portfolio (b)

Figure 9: Screenshots of the output tables from the Serenity risk measure service UX. The first row
of each table provides a classification of the contribution measures in the second row. The third
row shows the portfolio-level metrics for each measure and the contributing P&Ls from each asset
in the portfolio to the portfolio-level metrics are shown from the fourth row and below. Portfolio
(a) consists of two token assets, while portfolio (b) contains put options additionally.

which is not reflected in the risk measure output. Nonetheless, the risk measure output serves as a
starting point for further analysis, such as identifying the optimal option hedge that minimizes risk
while maximizing gain potential.

5 Conclusions

This document provides a comprehensive methodology3 for generating P&L scenarios within the
Serenity risk service for digital assets, specifically focusing on options. The current framework for
historical simulation encompasses spot prices and volatility surfaces, both of which are demonstrated
to have significant effects on the P&L of option contracts. Furthermore, the importance of employing
full revaluations is emphasized when dealing with nonlinear contracts. Lastly, we have illustrated the
identification of hedging option positions as a means to reduce potential losses while minimizing the
impact on potential gains. This highlights the capability of our risk measure service as an effective
tool for risk management.

Disclaimer

This document is not financial advice, solicitation, or sale of any investment product. The infor-
mation provided to you is for illustrative purposes and is not binding on Cloudwall Capital. This
does not constitute financial advice or form any recommendation, or solicitation to purchase any
financial product. The information should not be relied upon as a replacement from your financial
advisor. You should seek advice from your independent financial advisor at all times. We do not
assume any fiduciary responsibility or liability for any consequences financial or otherwise arising
from the reliance on such information.

3as of July 2023
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You may view this for information purposes only. Copy, distribution, or reproduction of all or any
portion of this article without explicit written consent from Cloudwall is not allowed.

A Distribution measures

In this appendix, we present the definitions of commonly used distribution measures.

For a given set of profit and loss (P&L) scenarios and a percentile value 50 < p < 100,

� Value-at-Risk (VaR) p%: The (100− p)-the percentile of the P&L scenarios, where the sign is
reversed to express the final value as a positive number.

� Conditional Value-at-Risk (CVaR) p%: The average of the loss scenarios larger than VaR p%.

� Gain-at-Risk (GaR) p%: The p-the percentile of the P&L scenarios.

� Conditional Gain-at-Risk (CGaR) p%: The average of the profit scenarios larger than GaR
p%.

� Standard Deviation (Std Dev): The standard deviation of the P&L scenarios.

� Downside Deviation (Down Dev): The standard deviation of the profit scenarios.

� Upside Deviation (Up Dev): The standard deviation of the loss scenarios.
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