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Abstract

Within the Cloudwall Serenity* software framework, we examine linear derivatives on digital 
assets, like perpetual and futures contracts. We explore various term structures to approximate
market expectations of forward prices. Additionally, we introduce several basis numbers, in both
multiplicative and logarithmic forms, demonstrating their application alongside the discussed
term structures. It is shown how the knowledge of basis numbers and projection rates helps
traders and portfolio managers to properly fine-tune their portfolio risk profile, offering insights
into strategic decision-making in the dynamic world of digital asset trading.
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1 Introduction

The digital asset market has grown notably with the introduction of various financial tools such as
perpetual and futures contracts. These tools present traders with a range of strategies to interact
with the market, each having its own unique features and effects. Perpetual contracts, which do not
have an expiry date, allow traders to hold positions as long as they have the necessary collateral.

* Cloudwall and the technology behind its Serenity System were acquired by Talos in April 2024. 
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On the other side futures contracts, with set expiry dates, enable traders to take positions on asset
prices at precise future times. It is crucial to understand these tools for effective risk management
and strategy improvement in digital asset trading. This paper discusses the fundamental aspects of
perpetual and futures contracts, explores the calculation of different types of basis and introduces
projection rates useful to estimate the forward prices of digital assets.

In this dynamic environment the Serenity software by Cloudwall becomes an indispensable tool,
equipping traders and investors with the knowledge and analytical capabilities to effectively manage
and capitalize on the intricacies of linear derivatives on digital assets.

1.1 Market Data

At Cloudwall we believe that market data should be the center of any modern software, therefore
we built Serenity as a data-driven system.

Digital asset exchanges offer a variety of financial instruments for trading asset pairs like BTC/USD.
These include:

� Spot markets, facilitating the immediate purchase of a digital assets.

� A range of futures contracts, allowing traders to take positions at different maturities.

� Perpetual contracts, enabling leveraged positions not tied to any specific maturity.

These instruments provide traders with the flexibility to align their trading strategies according to
their market outlook, risk tolerance, and investment horizon. The diversity in instrument types and
maturity dates also enriches the market ecosystem, fostering a dynamic and comprehensive trading
environment.

Note that not all exchanges offer all these asset types. For example, there are exchanges that only
offer futures and perpetual contracts and do not have spot facilities. On the other hand some
exchanges, such as DeFi platforms, do not significantly cover margin trading contracts. As we shall
see below, this is important because trading the same asset on different exchanges may offer some
arbitrage opportunities. The below definitions of basis are somewhat measuring these arbitrage
opportunities.

Understanding the variety and characteristics of these instruments requires precise market data.
At Cloudwall, we collect data from a multitude of providers to create data series for the Serenity
software. Accurate market data is crucial for reliable analyses and decision-making in financial
undertakings. To ensure the integrity and accuracy of the data, Cloudwall has implemented robust
data checks, as a consequence the data utilized is of high quality. The data in table 1 illustrates the
price and volume dynamics of different contract types, which is essential for traders and analysts to
gauge market behavior and identify potential trading opportunities.

2 Perpetual Contracts

Perpetual contracts represent a significant innovation in the domain of financial derivatives, espe-
cially within digital asset markets. Unlike traditional futures contracts which have a predetermined
expiration date perpetual contracts do not possess an expiry date, allowing positions to be held
indefinitely as long as the necessary collateral is maintained.
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Name Last Price (USD) 24H Change 24H Volume (USD)
BTC-Perpetual 27,614.50 -0.99% $323.08M
BTC-13-OCT-23 27,600.00 -1.02% $4.13M
BTC-20-OCT-23 27,627.50 -0.99% $2.55M
BTC-27-OCT-23 27,635.00 -1.07% $4.47M
BTC-29-DEC-23 27,892.50 -1.09% $7.93M
BTC-24-NOV-23 27,730.00 -1.13% $1.54M
BTC-29-MAR-24 28,225.00 -1.14% $3.18M
BTC-27-SEP-24 29,017.00 -0.88% $1.64M

Table 1: Deribit market quotes for the Bitcoin/USD pair on 10 October 2023 at 6:00 UTC. Recall
that futures maturities are at 8:00 UTC. Note that the BTC-USD Spot Price at the same time was
observed to be 27,615.00.

The trading dynamics of perpetual contracts also differ from those of futures contracts, especially
regarding the settlement process, which occurs continuously in the case of perpetual contracts as
opposed to at a set date in the case of traditional futures contracts.

2.1 The perpetual contracts basis

Given a digital assets its spot price represents the current market price at which the asset can
be bought for immediate delivery (or sold depending if it is a bid or an ask price). The quoted
price reflects the immediate equilibrium between supply and demand for that asset. In digital-asset
exchanges the spot price serves as the most straightforward representation of an asset’s current value
and is often considered a reference price for the associated derivatives.

On the other hand a perpetual-contract quote refers to the price at which traders can enter a contract
to buy or sell a digital asset at a later time, without a predetermined expiration date. Perpetual
contract quotes can deviate from the current market price of the underlying asset due to factors
such as funding rates, leverage, and market sentiment. The perpetual contract quote is affected
by traders’ expectations of the asset’s future price movements and the dynamics of the perpetual
market itself.

Perpetual contracts are frequently traded at a premium or discount to the spot price, contingent
on the market conditions. The basis of a perpetual contract measures the discrepancy between
the contract quote P and the spot price S of the underlying asset. Specifically, we define the
multiplicative perpetual/spot basis Bp

m implicitly from this expression:

P = S · (1 + Bp
m) where 1 + Bp

m > 0 . (1)

Here the superscript p reminds us that we are dealing with perpetual contracts so that we can
distinguish it from the basis for futures contracts defined below. Similarly the subscript m is a
reminder of the fact that this is a multiplicative basis. More explicitly, consistently with definitions
(1), the basis Bp

m is defined as

Bp
m =

P

S
− 1 . (2)

Since both P and S are positive, the multiplicative basis Bp
m can assume any value greater than -1.

When the multiplicative basis Bp
m is negative, the perpetual contract is quoted at a discount relative

to the price. Conversely, when Bp
m is positive, the contract is quoted at a premium relative to the
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Basis Type Multip. (bips) Log. (bips) 1-Week Rate (%)
Perpetuals/Spot -0.181061 -0.181063 -0.094410

F1/Spot -5.431831 -5.433306 -2.832312
F0/Spot -9.815104 -9.819924 -5.117876

Perpetuals/Futures -9.634217 -9.638861 -5.023556

Table 2: Basis numbers and equivalent rates for different ratios, for perpetual/spot, nearest fu-
tures/spot, zero-time-to-expiry/spot, and perpetual/futures. Note that the basis numbers are ex-
pressed in basis points, while the equivalent rate is expressed in percentage points. The 1-week
equivalent rate is defined in the text.

spot price. Equilibrium between the perpetual quote and the price is achieved when the basis is
precisely zero.

In order to analyze the statistical properties of the basis numbers across a broad spectrum of obser-
vations it is advantageous to define the logarithmic basis as

Bp
` = log

(
P

S

)
= log (1 + Bp

m) , (3)

where the “log” here symbol represents the standard natural logarithm function and the subscript

` in the symbol Bp
` is a reminder that this is a logarithm-based number. Note that Bp

` is defined
across the entire real-number line. Therefore statistics of the logarithmic basis Bp

` can be modelled,
for example, using a Gaussian distribution. Also notice that, since for any small real number x we
have

log(1 + x) ' x for |x| � 1 ,

then for small values Bp
m we have

Bp
m ' Bp

` . (4)

However, while Bp
m is limited to be greater than -1, Bp

` could in principle assume any real negative
number. Finally we observe that the multiplicative basis Bp

m and the logarithmic basis Bp
` are either

both positive or both negative.

The first row in table 2 shows the computation of the multiplicative and the logarithmic perpet-
ual/spot basis for the BTC/USD, for the data in table 1. Note that, as explained by approximation
(4), the values of the multiplicative and the logarithmic basis are very close to each other.

In order to make the interpretation of the basis numbers more straightforward, so that they can be
compared with the projection rates defined below, we define the concept of the 1-week equivalent
rate. For any given multiplicative basis number, we define the 1-week equivalent rate as the constant
rate that would be necessary to achieve the same percentage variation of the basis in one week. In
the case of the reference data of table 1, Bp

m is -0.181061 basis points and corresponds to a rate
-0.094410%, which applied uniformly for one week to the spot price of 27,615.00 would result in the
perpetual quote of 27,614.50.

Serenity publishes hourly both the multiplicative basis and the logarithmic basis for all available
perpetual contracts.
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3 Futures Contracts and the Projection Curve

Futures contracts are standardized agreements between two parties to buy or sell an asset at a pre-
determined price at a specified future date and time. Unlike spot trading, where the transaction and
asset delivery occur immediately, futures contracts entail a commitment to complete the transaction
at a later date. This mechanism allows traders and investors to hedge against price volatility and
speculate on price movements without the immediate need for capital outlay or asset transfer.

Comparatively, perpetual contracts, as discussed in section 2, allow for similar speculative and
hedging activities but without a predetermined expiration date. This key difference means that
traders can hold their positions indefinitely in a perpetual contract, while in a futures contract,
positions are settled at the contract’s expiration date.

3.1 Projection rates

Arbitrage relationships play a pivotal role in deciphering the pricing and dynamics of financial
instruments in the market. For instance, reference [1] elucidates a simple arbitrage-free relationship
between the spot price and the forward price. Although theoretically sound, the derivation of this
relationship often encounters deviations in digital asset markets, where arbitrage opportunities may
arise. Therefore, we aim to provide a definition of projection rates that stands independently from
any arbitrage relationship.

Threshold maturity hours

Consider a specific trading pair, for instance, Bitcoin/USD, and all the futures contracts associated
with this pair on a given exchange like, e.g., Deribit. We focus on the futures contract with the
shortest maturity. It’s a common practice for traders to rollover their contracts to the subsequent
maturity (i.e., the second shortest maturity) a few hours before expiration to circumvent delivery.
We observed that quotes associated with maturities shorter than approximately 12 hours, tend to
lose liquidity and eventually are removed from the list of actively traded futures. We introduce the
term threshold-maturity-hours to denote the minimum number of hours required in the futures for
a quote to be deemed valid. In the aforementioned scenario the threshold maturity hours, denoted
with Tmin, is 12 hours. Cloudwall will periodically review the threshold maturity hours to ensure
that the quotes utilized to bootstrap the projection rates always exhibit adequate liquidity.

Date/time conventions

As illustrated in Table 1, at any given moment and for the same specified trading pair, a variety
of futures contracts with different maturities are available. Unlike traditional commodity futures,
digital asset futures are traded 24 hours a day, 7 days a week. Therefore, when calculating the
residual maturity, it is crucial to consider not only the number of days before expiry but also the
exact time.

When the need arises to compute the elapsed period between two distinct points in time, we use
the difference in the number of days, adding a fraction so that an hour is counted as 1/24 days, a
minute is counted as 1/60 hours, and so on. The fractional number of days obtained in this manner
is then divided by the factor 365, to obtain the year fraction between the two points in time.
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Maturity pj fj rj
BTC-13-OCT-23 5.19% 5.19% -6.43%
BTC-20-OCT-23 5.19% 5.19% 1.64%
BTC-27-OCT-23 3.30% 1.42% 1.55%
BTC-24-NOV-23 4.08% 4.47% 3.36%
BTC-29-DEC-23 5.00% 6.09% 4.56%
BTC-29-MAR-24 4.87% 4.75% 4.66%
BTC-27-SEP-24 5.22% 5.55% 5.12%

Table 3: Values of the projection, forward and spot rates computed using the futures quotes of table
1. Note that in the computation of the spot rates we used a price of 27,615.00.

3.2 Definition of projection rates

Suppose we have a collection of n futures contracts listed on a specific exchange, all based on the
same underlying pair. These contracts are arranged in ascending order of their time to maturity,
with corresponding quotes marked F1, F2, . . . , Fn, and time-to-maturity in year fractions at T1 <
T2 < . . . < Tn. Note that we restrict our selection to contracts expiring after the minimum threshold
hours, i.e. with T1 ≥ Tmin.

We define the n-1 continuously-compounded projection rates pj as,

pj =
1

Tj − T1
log

(
Fj

F1

)
for j = 2, . . . , n . (5)

While we are not making any arbitrage assumption in the definition of the projection rates, one
could see the resemblance of our definition with the definition of forward-starting zero rates between
T1 and Tj , for j = 2, . . . , n.

Given F1 we can invert equation (5) to obtain the futures quotes in terms of the projection rates:

Fj = F1 e
pj(Tj−T1) for j = 2, . . . , n . (6)

If we were to assume the projection rates to define some kind of zero rates between T1 and Tj then
they would reflect the market expectation for projecting F1 from T1 to Tj , for j = 2, . . . , n (which
provides a justification for the projection rate nomenclature).

In the second column of table 3, we show the projection rates pj ’s computed using the contract
BTC-13-OCT-23 as the contract at T1, for the dataset in table 1. Similarly in figure 1 we show a
plot of the projection rates described in table 3. As evident from both the table and the figure, at
the time we captured the market data, the forward prices shows a typical upward sloping curve of
a contango market. As a consequence the corresponding projection rates are all positive.

3.3 Interpretation of the projection rate

Bitcoin is often referred to as “digital gold” due to its scarcity and store of value characteristics,
similar to physical gold. For example, Ferdinando Ametrano, a notable figure in the cryptocurrency
and blockchain space, has explored this comparison extensively in his work (see, e.g., reference
[3]). Even though Bitcoin does not pay any dividend, it can be considered to have a convenience
yield. Convenience yields are typically associated with commodities and represents the non-monetary
benefits of holding an asset rather than a derivative contract on the asset itself. In the case of Bitcoin,
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Figure 1: Plot of the projection, forward and spot rates presented in in table 3

the convenience yield could be interpreted as the benefit derived from holding a decentralized, border-
less, and censorship-resistant form of money that provides a hedge against inflation and monetary
policy changes. For other digital assets the convenience may come from other sources, for example
in the case of the Ether token it may arises from the utility of paying gas to run smart contracts
on the Ethereum blockchain. We assume that any digital asset has a certain convenience in holding
it directly as opposed to entering into a contract for its future delivery and that this convenience is
paid at a constant yield q.

In the conventional Black-Scholes option-pricing framework for a commodity with a continuously-
paying convenience yield q in a market with a continuously compounded interest rate i, the forward-
forward arbitrage relationship is given by:

Fb = Fa · e(i−q)(Tb−Ta) with Tb > Ta ,

where Fa and Fb denote the quotes of two forward contracts, one maturing at Ta and the other at Tb.
The term i−q in the exponent signifies that the exponential growth is proportional to the difference
between the interest rate i and the convenience yield q. Comparing this equation with equation (6)
we observe that the projection rate can be thought as the difference between the risk-free rate and
the convenience yield:

p = i− q .

Given the observations by reference [1] regarding the ambiguity in selecting the interest rates for
digital assets, coupled with the unclear definition of a convenience yield, for digital tokens, we opt
to calculate the projection rate as given, without further assumptions, and base the forward price
computation directly on p.

3.4 Interpolation and extrapolation of projection rates

We previously defined the projection rates on maturities of listed futures contracts. A natural
question arises: how do we extend this definition to cover maturities that are not listed on the
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market?

Several scenarios come to mind where we might be interested in knowing projection rates not match-
ing the futures maturities, e.g.:

1. Estimate the forward price when its maturity does not match any of listed futures contracts.

2. Define a time-invariant term structure of constant-maturity projection rates. For example,
every day compute the projection rates for tenors of 1-week, 1-month, 3-month, and so on.

Therefore we need to find the best way to interpolate between maturity dates of futures contracts.
Moreover we need to be able to extrapolate the projection rates for maturities that are either
preceding T2 or succeeding Tn.

In general, given a maturity T , we would like to write the expected forward price as a function of
the continuously compounded projection rate p(T ), so that

F (T ) = F1 · ep(T )(T−T1) , (7)

with p(T ) is defined for all T ’s.

Extrapolation of projection rates

Let’s start with the extrapolation of the pj ’s. We use constant flat extrapolation both before and
after the observed rates. Therefore when extrapolating to dates that are earlier than the second-
nearest futures maturity, we define:

p(T ) = p2 for T0 ≤ T ≤ T1 ,

where we recall that T0 is the year fraction corresponding to the current time. In particular we
define

p1 = p(T1) = p2 .

Similarly, when extrapolating to dates that are later than the latest futures-contract maturity, we
define:

p(T ) = pn for T ≥ Tn ,

where we recall that Tn is the maturity of the longest-dated futures contract.

Interpolation of projection rates

The interpolation of the projection rates is a bit trickier, since we would like to use it in the largest
numbers of quantitative models, such as the Black-Scholes-Merton model for pricing derivative assets
(see reference [4]). On the other hand we do not want to use exceedingly complicated interpolation
methods, such as those based on cubic splines (see, e.g., reference [2]).

Taking inspiration from the interest world, we interpolate linearly on the logarithm of the forward
price, in each maturity segment. As shown in reference [2] this method corresponds to piecewise-
constant forward curves. In practice take a time T so that for Tj−1 ≤ T < Tj for some j = 2, . . . , n,
then define,

F (T ) = Fj−1 · efj (̇T−Tj−1) , (8)

where, for consistency, fj must be such that F (Tj) = Fj , i.e.:

Fj = Fj−1 · efj (̇Tj−Tj−1) .
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We can derive the expression for the forward rate fj by inversion of this last equation:

fj =
1

Tj − Tj−1
log

(
Fj

Fj−1

)
. (9)

Note that f2=p2, hence we also define f1=f2.

Table 3 provides the values for the forward rates fj ’s for the market data of table 1. As expected,
as it can also be seen in figure 1, the variability of the forward rates is higher than that of the
projection rates.

If we take F (T ) from (7) and we substitute it into equation (8) we obtain:

F1 e
p(T )(T−T1) = Fj−1 · efj (̇T−Tj) .

By taking the natural logarithm of this expression we have that:

p(T )(T − T1) = log

(
Fj−1

F1

)
+ fj (̇T − Tj) ,

which can be further simplified, by using equation (5) for j − 1, to

p(T )(T − T1) = pj−1 (Tj−1 − T1) + fj (̇T − Tj) ,

which finally yields

p(T ) = pj−1 ·
Tj−1 − T1

T − T1
+ fj ·

T − Tj

T − T1
for Tj−1 ≤ T ≤ Tj . (10)

This equation, recursively in j, provides the functional from of the time-dependent projection-rate
function p(T ) in terms of the projection rates pj ’s and the forward rates fj ’s.

Using equation (7) for the extrapolation and equation (8) for the interpolation of the forward prices
we can compute the expected forward price at any future date. For example in figure 2 we show the
interpolated forward prices corresponding to a number of tenors applied to the the evaluation date of
10 October 2023 at 6:00 UTC. Similarly in figure 3 we show the projection rates corresponding to the
forward prices of figure 2. Note that these projection rates are no longer linked to specific maturity
dates so that their observation at different evaluation dates can provide interesting information
about the dynamics of projection rates.

4 Basis Rates for Futures Contracts

In section 2, we elaborate on the concept of basis for perpetual contracts. In this section, we expand
on the same concept for futures contracts. The discussion for futures contract basis is important for
scenarios such as:

1. Employing futures in a strategy alongside the spot price.

2. Incorporating futures in a strategy with a perpetual contracts.

3. In the absence of perpetual contracts, substituting a perpetual contract with the shortest-
maturity futures.
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Figure 2: Interpolated forward prices computed using the data of table 3 for a number of fixed tenors
applied to the evaluation date of 10 October 2023 at 6:00 UTC. Note that the tenor spacings are
not drawn to scale of the actual time between nodes.

4.1 Nearest futures basis

Firstly we define the basis using the next expiry contract with maturity T1, i.e. we define the nearest-
futures multiplicative basis as

Bf1
m =

F1

S
− 1 . (11)

Likewise, we define the nearest-futures logarithmic basis as

Bf1
` = log

(
F1

S

)
= log

(
1 + Bf1

m

)
. (12)

In the symbol of basis the superscript F1 reminds us that the basis is defined using F1 as reference
quote. These definitions of basis are sensible, e.g., in a market where perpetual contracts are not
quoted, and the nearest futures contract is used as a substitute.

By exponentiation of equation (12),

eB
f1
` = elog(F1/S) = F1/S , (13)

we can obtain an expression for F1 in terms of S and Bf1
` :

F1 = SeB
f1
` , (14)

which is used below.

Note that it is not possible to compare different values of the nearest-futures basis at different dates,
because the time to next expiry T1 is not constant. We solve this problem in the next subsection by
creating the zero-time-to-expiry futures basis numbers.
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Figure 3: Term structure of interpolated projection rates corresponding to the forward prices of
figure 2. Note that the tenors spacing are not drawn to scale of the actual time in between.

4.2 The zero-time-to-expiry futures basis

In an attempt to remove the varying time-to-next-expiry T1, we project the first-maturity quote F1

to the current time T0. Therefore we define the zero-time-to-expiry futures virtual quote F0 as,

F0 = F1 e
−p1(T1−T0) , (15)

where we recall that, by definition, p1 = p2. The value of F0 can be viewed as the quote of an
hypothetical futures contract that is about to expire immediately. In a perfectly efficient market
with no arbitrage, the value of F0 should be close to the spot price S:

F0 ' S .

In reality this isn’t always the case and there might exist persistent arbitrage opportunities (these
opportunities are typically utilized by traders to make profit out of this imbalance). Therefore we
define the zero-time-to-expiry futures basis measuring the differences between F0 and S. Hence, the
zero-time-to-expiry futures multiplicative basis Bf0

m is defined as:

Bf0
m =

F0

S
− 1 . (16)

Likewise, we define the zero-time-to-expiry futures logarithmic basis as

BF0
` = log

(
F0

S

)
= log

(
1 + Bf0

m

)
. (17)

Table 2 show both the multiplicative and the logarithmic basis for both the next-maturity/spot
and the zero-time-to-expiry/spot basis. As a comparison we note that the 1-week equivalent rates
are about 2.83% for the F1/Spot basis and about 5.12% for the F0/Spot basis. These numbers
are significant and express that there is a possible arbitrage opportunity between the spot and the
futures market.
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4.3 Basis rates between perpetual and the futures contracts

So far we have defined the basis numbers either from futures or perpetual quotes with respect to
the spot price. There is however a number of strategies that are completely independent of the spot
price. For example one could devise a strategy using long positions in futures contracts at different
maturities and hedge it using a short position in a perpetual contract.

Therefore we define the perpetual/futures multiplicative basis as

Bpf
m =

F0

P
− 1 , (18)

similarly we define the perpetual/futures logarithmic basis as

Bpf
m = log

(
F0

P

)
. (19)

In the above definitions of the perpetual/futures basis we use the zero-time-to-expiry futures vir-
tual quote F0 in order to remove possible variable time-to-maturity dependencies from the nearest
maturity T1.

Table 2 show both the multiplicative and the logarithmic basis for the F0/perpetual basis. As
a comparison we note that the 1-week equivalent rate of about 5.02% also indicates a significant
possible arbitrage opportunity between the perpetual and the futures market.

5 Spot-based projection rates

In this section we compare the above definition of the projection rates pj , as defined in equation
(6), with other formulations that are based on the relationship between futures quotes and the
spot-market price.

Consider for example the spot-based rates defined in reference [1]:

Fj = S · erj(Tj−T0) for j = 1, 2, . . . , n . (20)

Note that this definition provides n rates, while our previous definition of pj only provides n-1 rates.
(As we shall see shortly, the missing parameter is the nearest-futures basis.)

Since, for j = 2, . . . , n, both equation (6) and (20) are expression for Fj , we can eliminate Fj from
them to obtain:

F1 · epj(Tj−T1) = S · erj(Tj−T0) .

Now we use equation (14) for F1 to obtain,

S · eB
f1
` · epj(Tj−T1) = S · erj(Tj−T0) ,

that can be further simplified by eliminating S from both sides:

eB
f1
` · epj(Tj−T1) = erj(Tj−T0) .

Taking log on both sides of this expression and dividing by the maturity term Tj − T0 gives us:

rj =
Bf1

`

Tj − T0
+ pj ·

Tj − T1

Tj − T0
for j = 2, . . . , n , (21)
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i.e. an expression for the spot-based projection rates in terms of the nearest-futures log basis and
the projection rates defined in equation (5).

Therefore, we have just demonstrated that it is equivalent to use the n spot-based rates rj , for
j = 1, . . . , n, or the n-1 projection rates pj together with the basis Bf1

` .

Since the only dependence on the spot price in equation (21) is brought by the basis term Bf1
` , we

can deduce that the rates rj will always have a residual dependence on S. Therefore, it is advisable
to use the rj rates when we want to highlight the dependence on the spot price of a given asset
or portfolio. However, when our strategy is not directly dependent on the spot price, such as in a
futures-only portfolio, it is advisable to use the projection rates pj so that the spot-price dependence
is eliminated a priori.

For traders and portfolio managers who wish have to have a risk view based only on market future
expectations, the ability to isolate the spot effect can be crucial.

Figure 1 shows the spot rates together with the projection rates. We notice that the first term on
the right-hand-side of equation (21) is responsible for bringing down the whole spot-rate curve with
respect to the projection curve. This negative effect can be measured at the one-week spot by the
1-week equivalent rate of Bf1

m which, as shown in table 2, is about -5% .

6 Conclusions

This study explored the dynamics of financial instruments in digital asset markets, focusing on
perpetual and futures contracts. The basis for perpetual contracts was examined by comparing
the spot price and perpetual contract quotes. The discussion then moved to futures contracts,
introducing the concept of projection rates to understand price dynamics across different maturity
points. The computation of basis for futures contracts is also explained, covering scenarios of
nearest and extrapolated-futures basis. These analyses shed light on the relationship between spot
prices, perpetual quotes, and futures quotes, enriching the understanding of market dynamics. The
methodologies presented provide a foundation for further analysis, aiding in the development of
informed trading strategies in the digital asset domain.

In conclusions, the Serenity software by Cloudwall significantly aids portfolio managers in handling
linear derivatives, such as perpetual and futures contracts in the digital asset market. It provides
in-depth market data and analytical tools for understanding derivative dynamics, crucial for effective
risk management.

References

[1] K. Givens, Risk Neutral Discounting for Crypto Options in Serenity , Research, Cloudwall,

www.talos.com/insights, 2023 5, 7, 12

[2] Patrick S. Hagan and Graeme West. , Interpolation methods for curve construction. Ap-
plied Mathematical Finance 13 (2):89—129, 2006. , https://www.deriscope.com/docs/Hagan_
West_curves_AMF.pdf, 2006 8

[3] Ferdinando Ametrano, Bitcoin as Digital Gold, http://www.ametrano.net/courses/ 6

©Talos Global, Inc. 2024 Page 13

https://www.deriscope.com/docs/Hagan_West_curves_AMF.pdf
https://www.deriscope.com/docs/Hagan_West_curves_AMF.pdf
http://www.ametrano.net/courses/


[4] John C. Hull, Options, Futures, and Other Derivatives, 11th Edition, Pearson, February 21,
2021, ISBN: 978-0136939979 8

©Talos Global, Inc. 2024 Page 14



talos.com

Disclaimer: Talos Global, Inc. and its affiliates (“Talos”) offer software-as-a-service products that provide connectivity tools for institutional clients. 

Talos does not provide clients with any pre-negotiated arrangements with liquidity providers or other parties. Clients are required to independently 

negotiate arrangements with liquidity providers and other parties bilaterally. Talos is not party to any of these arrangements. Services and venues 

may not be available in all jurisdictions. For information about which services are available in your jurisdiction, please reach out to your sales 

representative. Talos is not is not an investment advisor or broker/dealer. This document and information do not constitute an offer to buy or sell, or a 

promotion or recommendation of, any digital asset, security, derivative, commodity, financial instrument or product or trading strategy. This document 

and information are not intended to constitute investment advice or a recommendation to make (or refrain from making) any kind of investment 

decision and may not be relied on as such. This document and information are subject to change without notice. It is provided only for general 

informational, illustrative, and/or marketing purposes, or in connection with exploratory conversations with institutional investors and is not intended for 

retail clients. The information provided was obtained from sources believed to be reliable at the time of preparation, however Talos makes no 

representation as to its accuracy, suitability, non-infringement of third-party rights, or otherwise. Talos disclaims all liability, expenses, or costs arising 

from or connected with the information provided. 



© Copyright 2024 | Talos Global, Inc.


	Introduction
	Market Data

	Perpetual Contracts
	The perpetual contracts basis

	Futures Contracts and the Projection Curve
	Projection rates
	Definition of projection rates
	Interpretation of the projection rate
	Interpolation and extrapolation of projection rates

	Basis Rates for Futures Contracts
	Nearest futures basis
	The zero-time-to-expiry futures basis
	Basis rates between perpetual and the futures contracts

	Spot-based projection rates
	Conclusions



