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Abstract

Delta hedging often plays a central role in managing directional risk for options traders.
However, the Black-Scholes model, which is often used to compute option delta and other
greeks, involves assumptions that are usually not reflective of real-world market conditions,
especially in the highly volatile digital assets market. This paper introduces Serenity’s smile-
adjusted delta as a subtle approach that accounts for the volatility smile phenomenon observed
in options markets. We follow with an empirical analysis of delta hedging strategies for Bitcoin
options, focusing on Serenity’s smile-adjusted delta compared to the traditional Black-Scholes
delta. Our study recognizes the unique characteristics of the digital asset market and uses
Serenity’s proprietary derivatives analytics and volatility surfaces to enhance risk management
techniques.

1 Introduction

Among the diverse instruments within the digital assets space, options have gained prominence
as essential tools for investors and traders seeking to mitigate risk and enhance returns. Delta
hedging, a widely adopted strategy, plays a pivotal role in managing risk associated with options by
dynamically adjusting portfolio positions to maintain delta neutrality. In particular, it manages the
directional risk of the option position by trading delta units of the underlying asset. This ensures
that the value of the portfolio remains unchanged when small changes occur to the value of the
underlying. However, the computation of the delta itself is a subject of interest, and remains highly
model dependent.

The Black-Scholes model famously comes to mind when we look for closed form solutions for option
pricing and hence, closed form solutions for delta computation. However, it is important to note that
while the Black-Scholes model provides a valuable framework for option pricing and delta hedging,
its assumptions might not perfectly reflect real-world market conditions. In particular, delta hedging
under Black-Scholes assumes perfect hedging if the volatility associated with the underlying asset
is non-stochastic, there are no transaction costs and the hedging is done continuously, all three of
which are impractical and unrealistic assumptions.

Moreover, moves in volatility are often correlated to spot moves, which remain unaccounted for due
to Black-Scholes’ treatment of volatility held constant and independent. In essence, this assumption
of constant volatility ignores the presence of fat tails or non-normally distributed behaviour in the
returns distributions of assets, which certainly is not the reality in the digital assets space. Hence,
the intricate nature of the digital asset market, characterized by high volatility and unique market
dynamics, necessitates a nuanced approach to delta hedging.

At Cloudwall, we use a Stochastic Volatility Inspired (SVI) - parametrised volatility surface to
model the behaviour of Implied Volatility. Refer to [1] for a detailed treatment of our state-of-
the-art volatility surfaces. In this paper, we undertake a comprehensive comparative analysis of two
prominent delta hedging strategies employed in the context of Bitcoin options: smile-adjusted deltas
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computed using Cloudwall’s in-house Volatility Surfaces and Analytics, and the classic Black-Scholes
deltas. Smile-adjusted deltas account for the volatility smile phenomenon often observed in options
markets, acknowledging the non-uniform distribution of implied volatilities across different strike
prices.

The motivation behind this study stems from the need for advanced risk management strategies
that cater to the distinct characteristics of digital asset options. Bitcoin, as a pioneer in the digital
assets realm, presents an intriguing case study due to its high volatility and market behavior that
may differ from traditional financial assets. At Cloudwall, we find that the digital asset market’s
relatively nascent nature, coupled with its rapid developments, calls for a deeper understanding of
effective risk mitigation techniques.

To achieve this, our analysis will span multiple dimensions. We analyse some implied volatility
dynamics for BTC options over the year 2022, followed by a comparison of modelling choices for
option greeks in Serenity* to the standard Black-Scholes model. Further, we quantitatively assess the 
performance of both delta hedging strategies using historical Bitcoin prices over 2022 and implied
volatility data. Additionally, we will delve into the implications of varying rebalancing frequencies
on the effectiveness of these strategies.

1.1 Behaviour of Implied Volatility

The Black-Scholes model for option pricing involves six parameters to price options, one of which is
the implied volatility, or the estimate of future variability in the underlying asset price, as implied
by the market. In mathematical terms, the implied volatility σimp is the value of σ for which the
theoretical option price given by the Black-Scholes model equals the listed option price.

C(S,K, T ) = V (S, r, p, σimp;K,T, φ) (1)

Implied volatility modelling has been crucial to derivatives modelling ever since the Black-Scholes
model was criticised for its flat volatility assumption. While this makes for a simplified model, this
is far from reality, where volatility is indeed stochastic in nature. Moreover, option prices, like any
other asset, are determined by market supply and demand. Given that options are largely used for
hedging and speculative purposes, it is not surprising that demand for OTM and ITM options are
higher. In turn, the volatility for these options are also generally higher relative to ATM options
and this gives rise to the phenomenon called a volatility smile.

Over the course of 2022, the behavior of the volatility smile for Bitcoin options showcased intriguing
patterns that reflected the prevailing market dynamics. Figure 1 illustrates the empirical behaviour
of the implied volatility of a BTC option expiring in December 2022, over four significant dates for
digital assets in 2022: The Wormhole bridge hack, the Terra LUNA crash, the Ethereum Merge in
July and the FTX Crash during mid-November.

In most instances, particularly during events like the Wormhole bridge hack and the Terra LUNA
crash, we note a prevailing negative skew pattern for implied volatility. In these cases, implied
volatility tends to be higher for out-of-the-money (OTM) puts than for OTM calls. Additionally,
the Ethereum Merge event indicates a transition toward a more neutral volatility smile, signifying
a potential shift toward positive market sentiment and a greater demand for OTM calls.

As news of the FTX crash broke and the cryptocurrency markets experienced a rapid and substantial
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Figure 1: Behaviour of Implied Volatility for a BTC option

decline in prices, the volatility skew underwent a notable transformation. Deep out-of-the-money
(OTM) put options, which provide protection against price declines, saw a remarkable surge in im-
plied volatilities. This increase reflected a heightened demand for downside protection as uncertainty
and panic swept through the market. We also observe a shrinking of the smile during the FTX crash,
indicating lower demand for at-the-money contracts, which is unsurprising.

Overall, we find empirical evidence confirms that volatility for digital assets follow a stochastic
process and are driven by movement in the underlying asset itself. We find that in the case of
Bitcoin, the behaviour of implied volatility signaled the market’s awareness of tail risks, given the
presence of the skew during periods of uncertainty. Such patterns reveal that traders and investors
are placing more emphasis on protecting against potential extreme price movements. Moreover,
this movement in volatility is not linear (i.e., the volatility skew is a nonlinear function of change
in underlying). This suggests that traders and investors anticipate different levels of volatility for
options that are deep in-the-money (ITM) or deep out-of-the-money (OTM).

2 Options Delta in Serenity

The theoretical convention for (Black-Scholes) delta is that we have a unique value for delta, given
a set of parameters. However, in reality the trading delta is computed based on rules of thumb
or modelling choices. To account for the stochastic behaviour of volatility in particular, we are
concerned with those choices that deal with changes in the volatility surface over time.

2.1 The Sticky Strike Rule

The sticky strike rule of thumb assumes that the implied volatility σ is independent of changes in the
spot (i.e., the implied volatility smile doesn’t change for change in the spot price) while ”sticking”
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to a specific strike price. Mathematically, we say that the implied volatility, when expressed as a
function of strike K, is invariant in the spot spot price S. if σ(S;K,T ) is the implied volatility for
given strike K and maturity T , then the sticky strike rule is the same as:

σ(S + dS;K,T ) = σ(S;K,T )⇔ ∂σ(S;K,T )

∂S
= 0 (2)

In this case, the volatility surface is determined by the time to maturity T and strike K, and we
can write the implied volatility for a specified option as σ(K,T ). Then, the value of the option can
be expressed as:

C(S,K, T, σ(K,T )) = V (S, r, p, σ(K,T );K,T, φ) (3)

The option price sensitivity to the underlying is simply given as

∆BS =
∂C

∂S
(4)

This is an attractive assumption because it enables the Black-Scholes formula to be used to calculate
the delta with the volatility parameter set to the implied volatility for strikeK. Thus, it acknowledges
the varying implied volatilities across different strike prices without assuming a constant volatility

across strikes. The same is true of the gamma, which becomes ∂2C
∂S2 or the rate of change of delta

with respect to the underlying.

The Black-Scholes delta used for this study is given by:

∆BS =
∂C(S,K, T, σ(K,T ))

∂S
= N

( ln(S/K) + (r + σ(K,T )2/2)T

σ(K,T )
√
T

)
(5)

where N(·) is the normal cumulative standard normal distribution function, C denotes the Black-
Scholes call option pricing formula, S denotes the underlying BTC price, r is the discount rate and
T is the time to maturity of the option.

2.2 The Sticky Moneyness Rule

The sticky moneyness rule of thumb assumes that the implied volatility, expressed as a function of
spot, moneyness and maturity is invariant in the spot price S. For a given moneyness m = K

S , we

define the implied volatility in the moneyness space as ˆσ(S;m,T )

σ̂(S + dS;m,T ) = σ̂(S;m,T )⇔ ∂σ̂(S;m,T )

∂S
= 0 (6)

where σ̂(S;m,T ) is the same as σ(S;K = mS, T ) in the strike space.

Then the implied volatility of an option of a given maturity is modelled as a function of both,
underlying S and strike K, i.e., σ(S;K,T ) in the absolute strike space. While the sticky strike
remains attractive and provides ease for computation, the sticky moneyness rule is much more
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representative of reality, where the underlying influences the implied volatility and they are not
independent of each other. In this case, the value of the option can be expressed as:

C(S,K, T, σ(S,K, T )) = V (S, r, p, σ(S,K, T );K,T, φ) (7)

Using the chain rule, it is easy to see that the delta of the option can now be expressed as:

∆SmileAdj =
∂C

∂S
+
∂C

∂σ
· ∂σ
∂S

(8)

Note that the first term in the expression is the sticky strike delta (or the delta calculated using
Black-Scholes) with the volatility parameter set equal to the implied volatility. In the second term,
the vega of the option ∂C/∂σ is positive. On the other hand, ∂σ/∂S measures the sensitivity of
the volatility to the spot. Given the payoff structure of the call option, it usually follows that if
σ(S,K, T ) is a declining (increasing) function of the strike K, then it is an increasing (decreasing)
function of spot S and ∆ is greater than (less than) that of the Black-Scholes delta. As such, this
delta approximately accomodates for the smile risk arising from shifts in the implied volatility due
to its dependence on the underlying spot and this delta is called the Smile Adjusted Delta.

Serenity reports this smile-adjusted delta, using our in-house SVI volatility surfaces to infer σ(S,K, T ).
A finite difference scheme is used to compute the differentials instead of the Black-Scholes formula.
Using the central difference approximation, we have:

∆Serenity =
V (S+, r, p, σ(S+,K, T );K,T, φ)− V (S−, r, p, σ(S−,K, T );K,T, φ)

S+ − S− (9)

Where S± = S(1 ± d) for d = 0.01 and the parametrised volatility σ(S±,K, T ) is extracted from
Serenity’s SVI implied volatility surface.

3 Methodology for Delta Hedging

To examine the delta hedging performance of both, the Black-Scholes delta and the Serenity delta,
we construct a self-financed delta-hedged portfolio with one short position in the BTC European-call
option and ∆ units of the underlying BTC. We also simulate a money market account, Mt which
grows at the discounting rate r. Assuming continuous compounding, the money market account
grows at a rate of e

rt
365 for annualised discounting rate at time t, rt.

Let Πt represent the value of the hedging portfolio at time t. At time t = 0 we have:

Π0 = ∆0S0 +M0

M0 = V0 −∆0S0

Since Π is self-financing, the money market account at time 0 consists of the positive option premium
from the short position, and the negative value of ∆ units of the underlying.
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At the next time step, the portfolio is rebalanced in order to remain delta-neutral. The value of
∆0 units of the underlying is now ∆0S1. We recalculate the new delta at this time step to be ∆1

and the new amount of the underlying asset that is needed in the portfolio using the following day’s
delta and underlying BTC price.

Then, the additional amount of the underlying to be purchased is given as:

(∆1 −∆0)S1

If the amount that is required in the underlying asset increases, we withdraw money from the money
market account in order to purchase the supplementary amount needed of the underlying asset. On
the other hand, if the amount in the underlying asset decreases, we sell the surplus and place the
proceeds in the money market account.

At the same time, the money market account earns interest overnight at the discount rate for time
t. Thus, the new money market account at time 1 is given as the sum of the gains or losses incurred
from our position in the underlying and the interest earned from the money market accont:

M1 = M0e
r0/365 − (∆1 −∆0)S1 (10)

Before we rebalance our position 1, we have Π−
1 = ∆0S1 +M0e

r0/365

Since the portfolio Π replicates the option, the absolute value of the difference between the replicating
portfolio and the value of the option represents the hedging error: hedging errort = εt = Vt −Π−

t

Since our main objective is to minimise the directional risk associated with the long option, we
analyse overall performance of the delta-hedging strategy using the root mean squared hedging
error, given by:

RMSHE =

√√√√ 1

n

T∑
t=1

ε2t (11)

This is used as the primary evaluation criteria.

4 Data

The data used in this study contains prices of BTC options traded on Deribit, which captures a large
segment of the crypto derivatives market with an aggregate daily traded volume of 550bn at the
time of writing this article. Such large trading volumes seen on Deribit makes it the most attractive
exchange for derivatives research in the digital assets space. Moreover, unlike CME (which also
offers options on BTC, but remains closed on weekends and holidays), Deribit’s trading platforms
are open 24/7. In this study, the European-style call options on BTC are used since these capture
the largest market and are liquid enough. We use daily call option prices and greeks, as well as
the discounting and projection rate computed using Serenity’s derivatives analytics APIs over the
period 01-Jan-2022 to 11-November-2022.

1After we rebalance our position, we have Π+
1 = ∆1S1 + M1
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The context of 2022 is particularly intriguing. It marked a period of both challenges and opportu-
nities for the cryptocurrency market. Regulatory developments, institutional adoption, macroeco-
nomic trends, and technological advancements shaped the landscape in ways that impacted options
trading. The volatile price fluctuations and the continued emergence of innovative financial products
make this year a critical case study for understanding the implications of delta hedging techniques.

Summary statistics for the sample are reported in Table 1. We report the statistics by segregating
the data into three moneyness categories. A call option is said to be Out-of-The-Money (OTM) if
the moneyness ratio St

K is less than 0.98, At-the-Money (ATM) if the ratio is between 0.98 and 1.02,
and In-the-Money (ITM) if the ratio is greater than 1.02. We report statistical behaviour of the
spot price for BTC, call option price and the implied volatility for strike K = $22000

Statistics BTC spot Call option Implied Volatility
mean 37407.21 18240.85 0.7482
std 7373.12 7027.68 0.0278
min 22493.47 3810.27 0.6771
max 47621.73 29364.55 0.8893

Table 1: Summary statistics for when BTC option is In-the-Money(ITM)

Statistics BTC spot Call option Implied Volatility
mean 21873.57 3883.13 0.7247
std 255.61 501.37 0.0150
min 21599.07 3125.73 0.7008
max 22198.64 4465.09 0.7449

Table 2: Summary statistics for when BTC option is At-the-Money(ATM)

Statistics BTC spot Call option Implied Volatility
mean 19497.92 1995.42 0.6691
std 1496.28 1301.97 0.0718
min 15775.44 74.26 0.4906
max 21522.00 4717.51 0.8756

Table 3: Summary statistics for when BTC option is Out-of-the-Money(OTM)

5 Empirical Results

Holding maturity constant, the comparison of the Black-Scholes delta and the smile adjusted delta
in Serenity is presented in Figure 2.

Note that the vega for a long call option is always positive. Thus, the relative difference between
the black-scholes and the smile-adjusted delta is a result of the sensitivity of the implied volatility
to the stock price, and thus indirectly a result of the slope of the volatility smile.

Figure 3 shows the volatility smile for the date 30-November-2022 and its corresponding slope with
respect to strike. Note that the smile for this date is slightly negatively skewed, as the ATM Strike
does not achieve the global minima of the smile, which occurs a higher strike, showing greater
demand for put options than calls at this time. Indeed, the negative slope for OTM put strikes and
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Figure 2: Comparison of Serenity’s delta to the Standard Black-Scholes delta for long BTC options

(a) Volatility smile for BTC call options (b) Slope of volatility smile (with respect to strike K)

Figure 3: Implied volatility dynamics with respect to strike K

some proportion of ITM (as seen from Figure 3b) put strikes largely influence the smile-adjusted
delta which is higher than the black-scholes delta over these strikes.

Moreover, the smile-adjusted delta is not only influenced by the slope of the volatility smile but
also the vega, shown in Figure 4. Since the vega is largest for ATM options, the difference between
the two deltas is greatest around the ATM strike, marked by the black dashed line. Moreover, the
difference between the deltas approaches zero for deep ITM and deep OTM options since the vega
for these options is close to zero.

The two deltas are equal when the slope of the implied volatility smile is zero. This makes intuitive
sense, since the Black-Scholes model assumes a flat volatility smile (i.e., zero slope) and in this case,
the smile-adjusted delta is simply the same as the Black-Scholes delta. In other words, in stable
market conditions, when volatility is independent of moves in the underlying asset price moves, the
smile adjusted delta should be approximately equal to the Black-Scholes delta.

To compare the stability of the two deltas, we graph the delta profiles for an option expiring on
December 29, 2022. As depicted in Figure 5, both the Black-Scholes and smile-adjusted deltas
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Figure 4: Option Vega for long BTC call options in Serenity

exhibit a parallel movement, albeit with a noticeable variance in magnitude. We note that the smile
adjusted delta is usually higher than the Black-Scholes delta. Thus, a comparison using a delta
hedging strategy for these two deltas studies the impact of the size of delta for market conditions of
2022.

Figure 5: Comparison of the Black-Scholes and smile adjusted delta, by time

A smile adjusted delta that is higher than the Black-Scholes delta suggests that the BTC option’s
risk exposure to changes in the underlying asset is greater when we account for the volatility smile
effect, compared to the traditional Black-Scholes model. Moreover, it suggests that the options
market is assigning a larger sensitivity to changes in BTC’s price and that market participants

Page 9©Talos Global, Inc. 2023



are pricing in the potential for more extreme price movements or tail risk that is not captured by
the normal distribution assumption of Black-Scholes. Consequentially, a smaller amount of BTC is
required to hedge each short position in the option as compared to the black-scholes world, due to
the greater sensitivity to changes in the underlying asset.

Initially, we study the results of the delta hedging experiment on a daily hedging frequency. Subse-
quently, we analyze the effects of altering the frequency of rebalancing. The hedging error reflects
the differences between the predicted changes in the portfolio value and the actual changes that
occur due to fluctuations in the market.

Figure 6: Comparison of the hedging error for Black-Scholes and smile adjusted delta, daily
hedging

Figure 6 depicts the hedging error for an option expiring on December 29, 2022, when we rehedge the
option daily. We find that for daily hedging frequency, the Black-Scholes delta performs worse than
Serenity’s smile adjusted delta. The average hedging error for the Black-Scholes delta is -0.03791,
while the average hedging error for the Serenity delta is -0.01450. As such, the Serenity delta offers
a more precise replication of the option’s behavior, on average.

Furthermore, the hedging error associated with the Black-Scholes delta displays greater variability,
characterized by a variance of 3.3267%. In contrast, the variance linked to the hedging error of
Serenity’s delta is approximately 1.8647%. Although, in both cases the average hedging error is
negative, which means that on average, the actual hedging strategy is less effective than predicted.
We also note that the variance of the hedging error is particularly large in bearish scenarios, when
the underlying BTC price is lower than < $25, 000. Particularly in this bearish price range, the
Black-Scholes delta showcases considerable negative hedging error values, whereas Serenity’s delta
performs considerably better.

Now, we check how our replication strategy performs when we adjust the rehedging frequency. We
do this by keeping our delta constant until the next rebalance, at which we recompute the delta and
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so on. Figures 7 and 8 shows the hedging error for Serenity’s and Black-Scholes delta over a range
of 1, 3, 7, 10, 15 and 30 day rehedging frequencies respectively.

Figure 7: Comparison of the hedging error for Serenity delta for varying hedging frequency

Figure 8: Comparison of the hedging error for Black-Scholes delta for varying hedging frequency

Page 11©Talos Global, Inc. 2023



We find a consistent trend for both deltas: the more frequent the hedging, the lower and less varied
in our hedging error. This is because when rehedging is done very frequently, the hedge is adjusted
more often to reflect the changes in the underlying asset’s price and implied volatility. Such frequent
adjustment helps the portfolio stay closer to a delta neutral position in response to the market
movement over time. In other words, the presence of gamma indicates that the delta is not constant
with change in underlying and so the it needs frequent adjusting.

To conduct a formal comparison, we utilize the root mean square hedging error (RMHSE) calculated
using equation 11 for both Serenity and Black-Scholes deltas across varying rehedging frequencies,
as illustrated in table 4.

Hedging Frequency (in days) ∆Serenity ∆BS Difference (∆Serenity −∆BS)
1 3.404131 5.771409 -2.367278
3 5.479241 6.678476 -1.199235
7 7.878473 8.495061 -0.616588
10 9.009913 9.449138 -0.439225
15 12.280269 11.770574 0.509695
30 17.160948 15.578776 1.582171

Table 4: RMHSE for Delta hedging using Serenity and Black-Scholes delta over different rehedging
frequencies

Analyzing the RMHSE results confirms the trends visualized in figures 7 and 8: The performance
of the delta hedge worsens as we rebalance less frequently.

For shorter rebalancing frequencies, the Serenity delta outperforms the Black-Scholes model. We find
that the BTC volatility smile introduces complexities which better capture the changes in implied
volatility and the option’s sensitivity to price movements over shorter rebalancing periods. However,
we find that for larger rebalancing frequencies, like the 15-day and 30-day case, the Black-Scholes
delta outperforms the Serenity delta.

6 Conclusions

Based on discussions above, the constant volatility assumption of the Black-Scholes model is violated
in practice. Hence, we find practical relevance in using deltas that control not only for the option
price sensitivity to BTC prices but also the indirect impact from a change in implied volatility.
Empirical tests using Serenity’s in-house volatility surfaces show that the delta hedging performance
of the Black-Scholes model for frequently rehedged strategies can be improved by using our Smile-
Adjusted Delta.

Overall, this paper undertook an empirical analysis of delta hedging strategies for Bitcoin options
using Serenity’s comprehensive derivatives analytics and volatility surfaces, considering the unique
characteristics of the digital asset market. By comparing two prominent delta hedging strategies
– the classic Black-Scholes delta and Serenity’s smile-adjusted delta – the study shed light on the
intricate dynamics of risk management in the digital assets space.

Through an in-depth empirical analysis of BTC options, we provided insights into the behavior of
implied volatility, capturing its stochastic nature and its sensitivity to market events. The volatil-
ity smile, with its distinct patterns during various market events, reflected traders’ and investors’
responses to tail risks and market sentiment shifts. The comparison of the two delta hedging strate-
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gies revealed the superiority of Serenity’s smile-adjusted delta in terms of accuracy and stability,
especially under more frequent rebalancing. The results showcased the importance of accounting for
the volatility smile effect, particularly in the digital assets market, where risk dynamics are far from
the assumptions of traditional financial models.
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