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Abstract

Given the standard raw SVI parameterization, we look at an equivalent parameterization 
that is very similar to the well-known Jump-Wing SVI parameterization. We call this new 
parameterization the Enhanced Jump-Wing SVI parameterization and show that it can be 
inverted to recover the raw SVI parameters for a wider range of parameters compared to the 
traditional Jump-Wing SVI parameterization. We explicitly derive the formula to recover the raw 
SVI parameters from the Enhanced Jump-Wing SVI parameters and then provide a vectorized 
implementation of the formula.

1 Introduction
The SVI (Stochastic Volatility Inspired) parameterization is a popular way to represent the

implied volatility surface. We call this parameterization the raw SVI model which is based on

the standard five parameters: ωraw = {a, b, ε, m,ϑ}. This parameterization is widely used in the

literature and in practice. Given these five raw SVI parameters we can compute the total implied

variance w(k ;ωraw) for any strike k .
Following closely the paper of Gatheral and Jacquier, see reference [1], we introduce a Modified

Jump-Wing SVI parameterization. This alternative parameterization has the following character-

istics:

• It has an explicit dependence on the time to expiration;

• it has a more intuitive interpretation of the parameters;

• it would be constant if the smile perfectly scaled as 1/
→
wt ;

• it is invertible for a wider range of parameters compared to the traditional Jump-Wing SVI

parameterization.

We are not aware of any previous work that has introduced this parameterization.

In this paper we provide an alternative explicit derivation of the inverse formula to recover the

raw SVI parameters from the enhanced Jump-Wing SVI parameters, that is a bit di!erent from the

one given in reference [1]. We also show how to compute the raw SVI parameters in a vectorized

way, which is useful for real-time calibration of the SVI model.
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2 The raw SVI parameterization
For a given parameter set ωraw = {a, b, ε, m,ϑ}, the raw SVI parameterization of total implied

variance reads:

w(k ;ωraw) = a + b
{
ε(k ↑m) +

√
(k ↑m)2 + ϑ2

}
, (1)

where a ↓ R, b ↔ 0, |ε| ↗ 1, m ↓ R, ϑ ↔ 0, and the condition a+ b ϑ
√
1↑ ε2 ↔ 0, which ensures

that w(k ;ωR) ↔ 0 for all k ↓ R, i.e. the absence of static arbitrage. In other words, this condition

ensures that the minimum of the function w(·;ωraw) is non-negative.

Note further that the function k ↘≃ w(k ;ωraw) is strictly convex on the whole real line. Also,

while traditionally the raw SVI parameters are defined for |ε| < 1 and ϑ > 0, we allow for the case

ϑ = 0 and |ε| = 1, in order to have a more general parameterization.

In practice the five raw SVI parameters have the following e!ects:

• Increasing a increases the general level of variance, a vertical translation of the smile;

• Increasing b increases the slopes of both the put and call wings, tightening the smile;

• Increasing ε decreases (increases) the slope of the left (right) wing, a counter-clockwise

rotation of the smile;

• Increasing m translates the smile to the right;

• Increasing ϑ reduces the at-the-money (ATM) curvature of the smile.

As there are many references on the raw SVI parameterization, we will not go into further details

here.

3 The Enhanced Jump-Wing SVI parameterization
Given the five raw SVI parameters, see equation (1), we define the enhanced SVI Jump Wings

six parameters ωejw = {vt ,ϖt , pt , ct , ṽt , ϱt} as follows:

wt = t · vt = a + b
(
↑εm +

√
m2 + ϑ2

)
, (2)

ϖt =
b

2
→
wt

(
ε↑

m→
m2 + ϑ2

)
, (3)

pt =
b (1↑ ε)
→
wt

, (4)

ct =
b (1 + ε)
→
wt

, (5)

t ṽt =
(
a + b ϑ

√
1↑ ε2

)
(6)

ϱt =
b

ϑ
if ϑ > 0 , ϱt = 0 if ϑ = 0 , (7)

where t is the time to expiration according to some day-count convention. While the at-the-money

total variance wt is not an explicit parameter in the raw SVI parameterization, it is convenient to

use it as a shorthand in the following computations. Note that when both m and ε are zero, the

volatility surface is symmetric so that we can set ϖt to zero, regardless of the value of ϑ.
Since b ↔ 0 and |ε| ↗ 1, we have that

pt ↔ 0 and ct ↔ 0

The enhanced SVI-JW parameters have the following interpretations:
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• vt gives the at-the-money variance;

• ϖt gives the at-the-money skew;

• pt gives the slope of the left (put) wing;

• ct gives the slope of the right (call) wing;

• ṽt is the minimum implied variance.

• ϱt is the shifted at-the-money total-variance convexity, i.e., the convexity at k=m.

Note that the ϱt parameter is not present in the traditional Jump-Wing SVI parameterization and

it is introduced here so that the Jump-Wing SVI parameterization is invertible over the whole

codomain of the raw SVI parameters.

Interpolation and extrapolation of the SVI calibrations.

As mentioned earlier, in normal market conditions the ωejw parameters are expected to be almost

constant. For this reason they are good candidates for the interpolation and extrapolation of the

implied volatility surface.

For example, suppose we know the raw SVI parameters at times t1 and t2. Then we can

compute the corresponding enhanced Jump-Wing SVI parameters at time t1 and t2 and interpolate

them at any time t between t1 and t2. We then invert the interpolated Jump-Wing SVI parameters

to recover the interpolated raw SVI parameters at time t.
Similarly, suppose we know the raw SVI parameters at time t1 and want to extrapolate them

to time t < t1. We can compute the Jump-Wing SVI parameters at time t1 and assume them to

be also valid at time t. We then invert the Jump-Wing SVI parameters to recover the raw SVI

parameters at time t. Similarly for the case when t > t2.
Note that, because the raw SVI parameters are not invariant under time transformation, the

direct interpolation and extrapolation of the raw SVI parameters is not advisable, as it is not

equivalent to the interpolation and extrapolation of the Jump-Wing SVI parameters. All these

considerations are applicable because the transformation from the raw SVI parameters to the

Jump-Wing SVI parameters is highly non-linear.

In the following sections we assume to have a realization of the enhanced Jump-Wing SVI

parameters ωejw={vt ,ϖt , pt , ct , ṽt , ϱt} and we want to recover the raw SVI parameters ωraw={a, b,
ε, m,ϑ} at the time to expiration t. Note that, as customary in the literature, we keep the subscript

t in the enhanced JW parameters however we do not write it in the raw SVI parameters, as the time

to expiration is always assumed to be known. Also we only consider values of the ωejw parameters

that are in the codomain of the raw SVI parameters, i.e., ωejw is always obtained from a valid raw

SVI parameter set.

4 Computation of the b and ε parameters
In order to recover the raw parameters from the enhanced Jump-Wing parameters we start by

computing the raw b and ε parameters.

The b parameter
Firstly, given the enhanced parameters we compute the total variance wt using equation (2),

i.e., wt = t · vt . Then, from the sum of equations (4) and (5) we can recover the b parameter as:

b =

→
wt
2
(ct + pt) . (8)
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This equation is the same as the one given in reference [1]. Note that the b parameter can always

be recovered from the Jump-Wing SVI parameters.

We now have two cases: when b equals zero and when b is di!erent from zero. When b is zero,

the Jump-Wing SVI parameterization is degenerate and the raw SVI parameters are not uniquely

defined. However, looking at equation (1) we see that the only parameter that is really needed is

a. Therefore we can set:

a = wt ,

b = 0 ,

ε = 0 ,

m = 0 ,

ϑ = 0 .

(9)

We continue the discussion assuming that b is di!erent from zero.

The ε parameter
Since

→
wt is always positive, we can multiply equations (4) and (5) by

→
wt and subtract the

first from the second to obtain:

→
wt · (ct ↑ pt) = b (1 + ε↑ 1 + ε) = 2 b ε ,

so that we can recover the ε parameter as:

ε =
ct ↑ pt
2 b

→
wt . (10)

Where we recall tha b is always di!erent from zero so that equation (10) is always well defined.

Note that this formula is di!erent from the one given in reference [1], which assumes a perfect

knowledge of the coe"cients ct and pt . When the coe"cients ct and pt are known with some

error, equation (10) provides a better estimate of the ε parameter, since we are averaging the two

quantities with a similar error
1
.

By combining together equations (8) and (10) we can express the ε parameter solely in terms

of the Jump-Wing SVI parameters:

ε =
ct ↑ pt
ct + pt

.

Since ct and pt are non negative, we have that |ε| ↗ 1. Note that we cannot deduce the stronger

condition |ε| < 1.

5 The m parameter
The computation of the m parameter is more involved and requires a lengthier derivation. We

split this derivation into a number of steps.

First equation for m and ϑ
Firstly we derive an expression for m/

→
m2 + ϑ2. Rearranging the terms in equation (3) we

have,

m→
m2 + ϑ2

= ε↑
2ϖt
→
wt

b
,

so that,
m→
m2 + ϑ2

= ς , (11)

1According to the traditional error propagation formula we reduce the error by a factor of
→
2.

2025 © Talos Global, Inc. 4



Marco Marchioro The Enhanced Jump-Wing SVI parameterization

where we have defined ς as:

ς = ε↑
2ϖt
→
wt

b
. (12)

Note that this definition of ς is the same as the one given in reference [1].

Assuming that ϑ is positive, from equation (11), we have that ς = 0 implies m = 0. By

extension, we define m = 0 when ς = 0, regardless of the value of ϑ.
When ς is di!erent from zero, we can write the expression that links m with ϑ as:

√
m2 + ϑ2 =

m

ς
, (13)

this last equation will be used in the following computations.

Computing ϑ given m
Let us assume that both m and ς are known and non zero. Then, since

→
m2 + ϑ2 is positive,

from equation (13), we must have:

sign(ς) = sign(m) .

We can now compute ϑ from equation (13) by observing that m=sign(ς)
→
m2, so that we have:

√
m2 + ϑ2 =

sign(ς)
→
m2

ς
.

Since m is not zero we can write:

sign(ς)

ς
=

→
m2 + ϑ2→
m2

=

√
m2 + ϑ2

m2
=

√
1 +
ϑ2

m2
.

By squaring both sides we obtain:

1

ς2
= 1 +

ϑ2

m2
,

which implies:

ϑ2 =

(
1

ς2
↑ 1

)
·m2 .

Recalling that we only accept non-negative values for ϑ, therefore by taking the square root of the

above equation we obtain:

ϑ = sign(ς) ·
√
1

ς2
↑ 1 ·m ,

which can be written as:

ϑ = ϕ ·m , (14)

by defining

ϕ = sign(ς) ·
√
1

ς2
↑ 1 . (15)

Note that also in this case the expression for ϕ is the same as the one given in reference [1].

Second equation for m and ϑ
Equation (14) linearly relates m with ϑ, however we need a second equation to fully recover

both parameters. In order to obtain this second equation we substitute
→
m2 + ϑ2 from equation

(13) into equation (2), to obtain:

vt · t = a + bm
(
↑ε+

1

ς

)
, (16)

2025 © Talos Global, Inc. 5



Marco Marchioro The Enhanced Jump-Wing SVI parameterization

we then considerz equation (6), i.e.,

ṽt · t = a + b ϑ
√
1↑ ε2 .

Subtracting this expression from equation (16) we obtain:

(vt ↑ ṽt) · t = bm
(
↑ε+

1

ς

)
↑ b ϑ

√
1↑ ε2 , (17)

i.e. an equation that linearly relates m with ϑ, while the other parameters are known.

Final expression for m
We can now substitute ϑ from equation (14) into equation (17) to obtain:

(vt ↑ ṽt) · t = bm
(
↑ε+

1

ς

)
↑ bϕm

√
1↑ ε2 ,

which can be re-written as:

(vt ↑ ṽt) · t = bm
[
↑ε+

1

ς
↑ ϕ

√
1↑ ε2

]
,

so that we have:

m =
(vt ↑ ṽt) · t

b
[
↑ε+ ς→1 ↑ ϕ

√
1↑ ε2

] . (18)

i.e. an explicit formula to recover the m parameter from the enhanced Jump-Wing SVI parameters

and the previously computed b and ε parameters.

Note that equation (18) is simpler, and therefore faster to compute, than the one given in

reference [1].

6 Computation of the a and ϑ parameters
The a and ϑ parameters need to be computed together by distinguishing a few cases depending

on the computed values of ε and m.

Notice that, regardless of the values of ε and m, with the help of equation (6), we can always

write an expression for a as,

a = ṽt · t ↑ b ϑ
√
1↑ ε2 . (19)

Then we distinguish two main cases: when m is zero and when m is di!erent from zero.

Case when m is zero
When m equals zero equation (2) can be re-written as

vt =
a + b |ϑ|
t

=
a + b ϑ

t
,

where the second equality is due to the fact that ϑ is not negative. Substituting a from equation

(19) into the above expression we obtain:

vt · t = ṽt · t ↑ b ϑ
√
1↑ ε2 + b ϑ ,

which becomes

(vt ↑ ṽt) · t = ϑ ·
(
1↑

√
1↑ ε2

)
· b ,

so that we have:

ϑ =
(vt ↑ ṽt) · t(
1↑

√
1↑ ε2

)
· b
, (20)
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This expression can be used to compute the ϑ parameter only when ε ⇐= 0.
When ε is zero equation (20) cannot be used. In this case we can compute ϑ from b and ϱt

using equation (7), i.e.:

ϑ =






b

ϱt
if ϱt ⇐= 0 ,

0 otherwise .
(21)

This expression can be used to compute the ϑ parameter only when both ε = 0 and m = 0. Note

that equation (21) has not been given in reference [1].

Case when m is not zero
As seen in reference [1], the case when m is di!erent from zero we simply use equation (14):

ϑ = ϕ ·m .

Finally, once the parameter ϑ is known, the a parameter can be recovered from equation (19),

i.e.:

a = ṽt · t ↑ b ϑ
√
1↑ ε2 .

7 Vector computation of raw SVI parameters
Consider now a vector of enhanced Jump-Wing SVI parameters ωiejw = {v i ,ϖi , pi , c i , ṽ i , ϱi},

we want to compute the corresponding vector of raw SVI parameters ωiraw = {ai , bi , εi , mi ,ϑi}.
We consider all indexes i ↓ !, where ! is an index set. Also, since we are interested in numerical

computations, we define the error scale ↼ as a small positive number, e.g., ↼ = 10→8.
Given the time to expiration t, we start by computing the vector w i of total variance from the

Jump-Wing SVI parameters using equation (2), i.e.:

w i = v i · t for all i ↓ ! . (22)

Then for all indexes i ↓ ! we set the fallback values to the set the raw parameters as in equation

(9), i.e.:

ai = w i ,

bi = 0 ,

εi = 0 ,

mi = 0 ,

ϑi = 0 ,

for all i ↓ ! . (23)

This is because all corner cases that cannot be handled by the following formulas will be set to the

fallback values.

Computation of the b, ε and m vectors
We compute the vector bi using equation (8), i.e.:

bi =
c i + pi

2
→
w i

for all i ↓ ! . (24)

We then define the set !↑ of indexes i such that bi is numerically not zero
2
, i.e.:

!↑ =

i ↓ ! so that |bi | ↔ ↼


.

2Since the parameter is not dimensionless, we should in principle choose a scale for it, e.g., maxi
{
bi
}
, however

this scale in practice is of the order of 1.
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We now consider all indexes i ↓ !↑ and compute the εi parameter using equation (10), i.e.:

εi =
c i ↑ pi

2 bi

√
w i for all i ↓ !↑ . (25)

Then we proceed with the computation of the m parameters. From equation (18) we have:

mi =


v i ↑ ṽ i


· t

bi
[
↑εi + ↽ i ↑ ϕi


1↑ (εi)2

] for all i ↓ !↑ . (26)

where we defined ↽ i as the inverse of ςi from (12) and ϕi as in equations and (15), i.e.:

↽ i =



εi ↑
2ϖi
→
w i

bi

→1
and ϕi = sign(↽ i) ·


(↽ i)2 ↑ 1 . (27)

Computation of the ϑ and a vectors
In order to properly compute the ϑ parameter we need to distinguish a number of cases and

use either of equations (14), (20) or (21). Specifically we define:

ϑ =






ϕi ·mi when mi ⇐= 0 ,

v i ↑ ṽ i


· t[

1↑

1↑ (εi)2

]
· bi

when mi = 0 and εi ⇐= 0 ,

bi

ϱi
when mi = 0 and εi = 0 and ϱi ⇐= 0 .

(28)

The case not covered here are covered by the fallback values in equation (23).

Finally we compute the a parameter using equation (19), i.e.:

ai = ṽ i · t ↑ bi ϑi

1↑ (εi)2 for all i ↓ !↑ (29)

and the case when b = 0 is covered by the fallback values in equation (23).

8 Conclusions
We have shown how to compute the raw SVI parameters from the enhanced Jump-Wing SVI

parameters in a vectorized way. This computation is useful for the interpolation and extrapolation

of the SVI calibrations. While these computations are not very di!erent from the ones given in

reference [1], they are more explicit and easier to compute. Furthermore we have shown how to

handle all the degenerate cases that can arise in practice.
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