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Abstract

This paper explores the pricing variables of perpetual and futures contracts within the Talos 
portfolio management system. For perpetual contracts, we define the contract basis as the 
relative di!erence between the contract quote and the index price, introducing a 1-week 
equivalent rate to simplify basis interpretation. For futures contracts, we introduce the projec-
tion rates, defined as the continuously compounded rates used to project the index quote to 
other maturities. We provide three definitions of projection rates: the forward-starting rate, 
the zero-maturity rate, and the spot-index rate, each suited for di!erent application contexts. 
In order to compute the forward prices with the forward-starting projection rates and the zero-
maturity projection rates, one also needs to employ the corresponding basis numbers. Similarly, 
the spot-index projection rates are useful in purely continuous-time models, such as the popular 
Black-Scholes-Merton model often used to compute option prices. We illustrate these concepts 
with examples from market data on the Deribit exchange.
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1 Introduction
The digital asset market has grown notably with the introduction of various financial tools

such as perpetual and futures contracts. These tools present traders with a range of strategies
to interact with the digital financial markets, each having its own unique features and e!ects.
Perpetual contracts, which do not have expiry dates, allow traders to hold positions as long as they
have the necessary collateral. On the other side futures contracts, with set expiry dates, enable
traders to take positions on asset prices at precise future times. It is crucial to understand these
tools for e!ective risk management and strategy improvement in digital asset trading. This paper
discusses the fundamental aspects of perpetual and futures contracts, explores the pricing variables
associated with these contracts, and introduces the concept of projection rates to estimate the
forward prices of digital assets.

In this dynamic environment the portfolio management system by Talos becomes an indis-
pensable tool, equipping traders and investors with the knowledge and analytical capabilities to
e!ectively manage and capitalize on the intricacies of linear derivatives on digital assets.

While the term linear derivatives often refers to instruments with linear or inverse payo!s, in
this context, we use the term more broadly to describe financial tools with linear or quasi-linear
payo!s; see reference [5] for a more detailed discussion of the related pricing functions. The Talos
portfolio management system is designed to handle derivatives with both linear and inverse payo!s,
ensuring comprehensive support for the diverse strategies employed in digital asset trading.

1.1 Market data
At Talos we believe that market data should be the center of any modern financial software,

therefore we built the portfolio management system as a data-driven system.
Digital asset exchanges o!er a variety of financial instruments for trading asset pairs like

BTC/USD. These include:

• Spot markets, facilitating the immediate trading of a digital assets.

• Perpetual contracts, enabling leveraged positions not tied to any specific maturity.

• A range of futures contracts, allowing traders to take positions at di!erent future maturities.

These instruments provide traders with the flexibility to align their trading strategies according to
their market outlook, risk tolerance, and investment horizon. The diversity in instrument types and
maturity dates also enriches the market ecosystem, fostering a dynamic and comprehensive trading
environment.

Note that not all exchanges o!er all these asset types. For example, there are exchanges that
only o!er futures and perpetual contracts and do not have spot facilities. On the other hand some
exchanges, such as DeFi platforms, do not significantly cover margin trading contracts. As shown
in reference [5], this is important because trading the same asset on di!erent exchanges may o!er
some arbitrage opportunities. The below definitions of basis and projection rates are somewhat
measuring these arbitrage opportunities.

Understanding the variety and characteristics of these instruments requires reliable market data.
At Talos, we collect data from a multitude of providers to create data series for the portfolio
management system. Accurate market data is crucial for reliable analyses and decision-making in
financial undertakings. To ensure the integrity and accuracy of the data, Talos has implemented
robust data-quality checks, as a consequence the data utilized is of high quality. The data in table
1 illustrates the quotes of perpetual and futures contracts for the BTC/USD pair on the Deribit
exchange. This data is used to compute the basis numbers and projection rates discussed in this
paper.
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Contract Type Name Maturity Index Price Mark Price
PERPETUAL BTC-PERPETUAL –None– 66,938.67 66,955.93

FUTURE BTC-25OCT24 2024-10-25 66,939.20 67,016.63
FUTURE BTC-1NOV24 2024-11-01 66,938.15 67,144.75
FUTURE BTC-29NOV24 2024-11-29 66,939.20 67,671.62
FUTURE BTC-27DEC24 2024-12-27 66,962.23 68,208.20
FUTURE BTC-28MAR25 2025-03-28 66,939.20 69,701.68
FUTURE BTC-27JUN25 2025-06-27 66,939.20 71,189.02
FUTURE BTC-26SEP25 2025-09-26 66,939.20 72,679.60

Table 1: Deribit market quotes for the Bitcoin/USD pair on 22 October 2024 at 13:00 UTC.
Recall that all futures maturities are at 8:00 UTC.

2 Perpetual Contracts
Perpetual contracts represent a significant innovation in the domain of financial derivatives,

especially within digital asset markets. Unlike traditional futures contracts, which have a predeter-
mined expiration date, perpetual contracts do not possess an expiry date, allowing positions to be
held indefinitely as long as the necessary collateral is maintained.

The trading dynamics of perpetual contracts also di!er from those of futures contracts, espe-
cially regarding the settlement process, which occurs continuously in the case of perpetual contracts
as opposed to at a set date in the case of traditional futures contracts.

2.1 The perpetual contracts basis
Given a digital asset its spot price represents the current market price at which the asset can

be bought for immediate delivery (or sold depending if it is a bid or an ask price). The quoted
price reflects the immediate equilibrium between supply and demand for that asset. In digital-asset
exchanges the spot price serves as the most straightforward representation of an asset’s current
value and is often considered a reference price for the associated derivatives. On the other hand
a perpetual-contract quote refers to the price at which traders can enter a contract to buy or
sell a digital asset at a later time, without a predetermined expiration date. Perpetual contract
quotes can deviate from the current market price of the underlying asset due to factors such as
funding rates, leverage, and market sentiment. The perpetual contract quote is a!ected by traders’
expectations of the asset’s future price movements and the dynamics of the perpetual market itself.

It should be noted that perpetual contracts are not settled with respect to the spot price,
instead they are settled with respect to an index price based on the underlying asset value. The
index price is often a weighted average of the spot prices of the asset on a number of markets and
is quoted by the exchange where the perpetual contract is traded.

We denote with It the index quote at the time t and with Ft the perpetual contract quote at the
same time. The basis of a perpetual contract measures the discrepancy between the contract quote
and the index price. Specifically, we define the contract basis Bc

t implicitly from this expression:

Ft = It · (1 + Bc
t ) . (1)

Here the superscript c reminds us that we are dealing with a contract and the subscript t is a
reminder that the basis is time-dependent. More explicitly, consistently with definitions (1), the
basis Bc

t is defined as

Bc
t =
Ft
It
→ 1 . (2)

Since both Ft and It are positive, the multiplicative basis Bc
t can assume any value greater than -1.

When the contract basis is negative, the perpetual is quoted at a discount relative to the index.
Conversely, when the basis is positive, the contract is quoted at a premium relative to the index
price. Equilibrium between the perpetual quote and its index is achieved when the basis is precisely
zero.
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Contract Type Name Contr. Basis Weekly Rate
PERPETUAL BTC-PERPETUAL 2.58 1.34
FUTURE BTC-25OCT24 11.57 6.03
FUTURE BTC-1NOV24 30.71 16.01
FUTURE BTC-29NOV24 109.42 57.05
FUTURE BTC-27DEC24 189.58 98.85
FUTURE BTC-28MAR25 412.68 215.19
FUTURE BTC-27JUN25 634.88 331.04
FUTURE BTC-26SEP25 857.55 447.15

Table 2: Contract basis numbers and weekly equivalent rates for all contracts listed in table 1. The
basis numbers are expressed in basis points (bips) and the weekly rates are expressed in percentage
points (%). Note that practitioners are usually interested only in the perpetual basis and the basis
of the nearest futures contract.

The first row in table 2 shows the computation of the contract basis for the derivatives listed
in table 1.

In order to make the interpretation of the basis numbers more straightforward, so that they
can be compared with the projection rates defined below, we define the concept of the 1-week
equivalent rate. For any given multiplicative basis number, we define the 1-week equivalent rate as
the constant rate that would be necessary to achieve the same percentage variation of the basis in
one week.

Talos publishes periodically the multiplicative contract basis numbers for all available perpetual
contracts.

3 Forward Starting Projection Rates
Futures contracts are standardized agreements between two parties to buy or sell an asset at a

predetermined price at a specified future date and time. Unlike spot trading, where the transaction
and asset delivery occur immediately, futures contracts entail a commitment to complete the
transaction at a later date. This mechanism allows traders and investors to hedge and speculate
against price movements without the immediate need for capital outlay or asset transfer.

Comparatively, perpetual contracts, as discussed in section 2, allow for similar speculative and
hedging activities but without a predetermined expiration date. This key di!erence means that
traders can hold their positions indefinitely in a perpetual contract, while in a futures contract,
positions are settled at the contract’s expiration date. See reference [5] for a comprehensive
discussion on the pricing function of perpetual and futures contracts.

Arbitrage relationships play a pivotal role in deciphering the pricing and dynamics of financial
instruments in the market. For instance, reference [3] elucidates a simple arbitrage-free relationship
between the spot price and the forward price. Although theoretically sound, the derivation of this
relationship often encounters deviations in digital asset markets, where arbitrage opportunities may
arise. Therefore, we aim to provide a definition of projection rates that stands independently from
any arbitrage relationship.

3.1 Continuous-trading related nuances
Di!erently from traditional equity markets, digital asset markets are characterized by their

24/7 trading hours, which allow for continuous trading of perpetual and futures contracts. This
continuous trading environment provides a unique opportunity to observe the dynamics of the
market, however, it also introduces challenges in the computation of projection rates.
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Threshold maturity hours

Consider a specific trading pair, for instance Bitcoin/USD, and all the futures contracts associated
with this pair on a given exchange like, e.g., the Deribit exchange. We focus on the futures contract
with the shortest maturity. It’s a common practice for traders to rollover their contracts to the
subsequent maturity (i.e., the second shortest maturity) a few hours before expiration to circumvent
delivery. We observed that quotes associated with maturities shorter than approximately 3 hours,
tend to lose liquidity and eventually are removed from the list of actively traded futures. We
introduce the term threshold-maturity-hours to denote the minimum number of hours required in
the futures for a quote to be deemed valid. In the aforementioned scenario the threshold maturity
hours, denoted with Tmin, is 3 hours. Talos periodically reviews the threshold maturity hours to
ensure that the quotes utilized to bootstrap the projection rates always exhibit adequate liquidity.

Date/time conventions

As illustrated in Table 1, at any given moment and for the same specified trading pair, a variety
of futures contracts with di!erent maturities are available. Unlike traditional commodity futures,
digital asset futures are traded 24 hours a day, 7 days a week. Therefore, when calculating the
residual maturity, it is crucial to consider not only the number of days before expiry but also the
exact time.

When the need arises to compute the elapsed period between two distinct events, we use the
di!erence in the number of days, adding a fraction so that an hour is counted as 1/24 days, a
minute is counted as 1/60 hours, and so on. The fractional number of days obtained in this manner
is then divided by the factor 365, to obtain the year fraction between the two events in time.

3.2 Forward-starting projection rates
Suppose we have a collection of n futures contracts listed on a specific exchange, all based

on the same underlying pair, with the same settlement currency and the same payo! type (i.e.
liner or inverse). We arrange these contracts in ascending order of their time to maturity, with
corresponding quotes marked F1, F2, . . . , Fn, and time-to-maturity in year fractions at T1 < T2 <
. . . < Tn. Note that we restrict our selection to contracts expiring after the minimum threshold
hours, i.e. with T1 ↑ Tmin. For simplicity we denote the current time as t: this is the reference
time at which we observe the market data. We call T1 the nearest futures maturity and F1 the
nearest futures quote. Similarly Tn is the farthest futures maturity and Fn is the farthest futures
quote.

With all these definitions in place, we can now formally define the forward-starting projection

rates rj ’s at the maturity nodes as,

rj =
1

Tj → T1
log

(
Fj
F1

)
for j = 2, . . . , n . (3)

Given the nearest futures quote F1 we can invert equation (3) to obtain the futures quotes in
terms of the forward-starting projection rates:

Fj = F1 e
rj(Tj→T1) for j = 2, . . . , n . (4)

If we were to assume these projection rates to define some kind of zero rates between T1 and Tj
then they would reflect the market expectation for projecting F1 from T1 to Tj , for j = 2, . . . , n
(which provides a justification for the forward-starting projection rate nomenclature).

In the second column of table 3, we show the forward-starting projection rates rj ’s computed
using the contract BTC-25OCT24 as the contract expiring at T1, for the dataset of table 1.
Similarly in figure 1 we show a plot of the projection rates computed using the market data of table
3. As evident from both the table and the figure, at the time we captured the market data, the

2024, 2025 © Talos Global, Inc. 5



Marco Marchioro Futures Projection Rates and Basis Numbers

j Maturity rj (%) fj (%) zj (%) sj (%)
1 BTC-25OCT24 9.96 9.96 9.96 15.11
2 BTC-1NOV24 9.96 9.96 9.96 11.43
3 BTC-29NOV24 10.14 10.19 10.13 10.51
4 BTC-27DEC24 10.21 10.30 10.20 10.42
5 BTC-28MAR25 9.31 8.69 9.32 9.41
6 BTC-27JUN25 9.00 8.47 9.01 9.07
7 BTC-26SEP25 8.81 8.31 8.82 8.86

Table 3: Node values, for j = 1, . . . , 7, of the forward-starting projection rates rj ’s, the forward
rates fj ’s, the zero-maturity projection rates zj ’s, and spot-index projection rates sj ’s, computed
using the futures quotes listed in table 1.

forward prices shows a typical upward sloping curve of a contango market. As a consequence the
corresponding projection rates are all positive.

3.3 Interpretation of the projection rate
Bitcoin is often referred to as digital gold due to its scarcity and store-of-value characteristics,

akin to physical gold. For example, Ferdinando Ametrano, a notable figure in the cryptocurrency
and blockchain space, has explored this comparison extensively in his work (see, e.g., reference
[1]). While Bitcoin does not pay dividends, it can be considered to have a convenience yield.
Convenience yields, typically associated with commodities, represent the non-monetary benefits of
holding an asset rather than a derivative contract on the asset itself.

In the case of Bitcoin, the convenience yield may be interpreted as the benefits derived from
holding a decentralized, borderless, and censorship-resistant form of money, o!ering a hedge against
inflation and monetary policy changes. Additionally, there is a security element to consider: holding
Bitcoin directly in cold storage eliminates counterparty risks, such as those arising from centralized
exchanges or DeFi smart contracts. When evaluating the opportunity cost of using Bitcoin to
collateralize a derivatives position, traders may weigh the foregone yield against the expected risk
of capital loss, which could be thought of as a form of implied credit spread rather than a traditional
convenience yield1.

For other digital assets the convenience may come from di!erent sources. For instance, the
Ether token’s convenience could arise from its utility as gas for running smart contracts on the
Ethereum blockchain. In this work we assume that any digital asset has a certain convenience in
holding it directly as opposed to entering into a contract for its future delivery. This convenience,
encompassing both intrinsic benefits and security considerations, is reflected in a constant yield q.

In the conventional Black-Scholes option-pricing framework for a commodity with a continuously-
paying convenience yield q in a market with a continuously compounded interest rate i , the forward-
forward arbitrage relationship is given by:

Fb = Fa · e(i→q)(Tb→Ta) with Tb > Ta ,

where Fa and Fb denote the quotes of two forward contracts, one maturing at Ta and the other
at Tb. The term i → q in the exponent signifies that the exponential growth is proportional to the
di!erence between the interest rate i and the convenience yield q. Comparing this equation with
equation (4) we observe that the projection rate can be thought as the di!erence between the
risk-free rate and the convenience yield:

r = i → q .
1We thank Kyle Downey for this insightful suggestion regarding the interplay between convenience yield and

implied credit spreads in the context of digital asset holdings.
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Given the observations in reference [4] on the ambiguity of selecting appropriate interest rates for
digital assets, and the undefined nature of a convenience yield for digital tokens, we calculate the
projection rate as provided, without additional assumptions, and base the forward price computation
directly on r .

3.4 Interpolation and extrapolation of projection rates
We previously defined the forward-starting projection rates at the maturities of listed futures

contracts. A natural question arises: how can we extend this definition to cover maturities that
are not listed on the market?

Several scenarios illustrate the need for projection rates beyond listed futures maturities, such
as:

1. Estimating the forward price when its maturity does not match any listed futures contract.

2. Establishing a time-invariant term structure of constant-maturity projection rates, such as
computing daily projection rates for fixed tenors like 1-week, 1-month, and 3-month intervals.

To address this need, we must find an e!ective method to interpolate between the maturity dates
of futures contracts. Additionally, we need a reliable approach for extrapolating projection rates
for maturities that either precede T2 or extend beyond Tn.

In general, given a maturity T , we would like to write the expected forward price as a function
of the nearest-futures projection rate function r(T ), so that

F (T ) = F1 · er(T )(T→T1) , (5)

with r(T ) is defined for all T > t.

Extrapolation of projection rates

Let’s start with the extrapolation of the forward-starting projection rates. We assume a constant
flat extrapolation both before and after the observed rates. Therefore when extrapolating to dates
that are earlier than the second-nearest futures maturity, we define:

r(T ) = r2 for t ↓ T ↓ T1 .

In particular we define
r1 = r(T1) = r2 .

Similarly, when extrapolating to dates that are later than the farthest futures-contract maturity,
we define:

r(T ) = rn for T ↑ Tn ,

where we recall that Tn is the maturity of the longest-dated futures contract.

Interpolation of projection rates

The interpolation of the projection rates is a bit trickier since we would like to use it in a large
number of quantitative models, such as the Black-Scholes-Merton model for pricing derivative
assets (see the later discussion in this paper about this topic). On the other hand we do not want
to use exceedingly complicated interpolation methods, such as those based on cubic splines (see,
e.g., reference [2]).

Taking inspiration from the interest-rate world, we interpolate, in each maturity segment, lin-
early on the logarithm of the forward price. As shown in reference [2] this method corresponds to
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Figure 1: Plot of the node forward-starting projection rates rj ’s, the forward rates fj ’s, the zero-
maturity projection rates zj ’s, and spot-index projection rates sj ’s, presented in in table 3.

piecewise-constant instantaneous forward curves. In practice given a generic maturity T that is
strictly included in the j-segment, i.e. so that we have

Tj→1 < T < Tj for some j = 2, . . . , n ,

we define the segment forward rate fj so that:

F (T ) = Fj→1 · efj (̇T→Tj→1) . (6)

For consistency, F (T ) must be such that F (Tj) = Fj , i.e. the forward price at Tj must be the
futures price Fj :

Fj = Fj→1 · efj (̇Tj→Tj→1) .

By inverting this expression we can derive an equation for the segment forward rates fj :

fj =
1

Tj → Tj→1
log

(
Fj
Fj→1

)
for all j = 2, . . . , n . (7)

Note that f2 = r2. We also define the forward rate f1 as the projection rate r1, i.e. f1 = r1 and also
note that we have f1 = f2.

Table 3 provides the values for the forward rates fj ’s for the market data of table 1.

Forward-starting projection-rate function

We now have all the necessary ingredients to define the forward-starting projection rate function
r(T ). We can take F (T ) from expression (5) and substitute it into equation (6) to obtain:

F1 e
r(T )(T→T1) = Fj→1 · efj (̇T→Tj ) .

We divide both sides by F1 and take the natural logarithm of both sides to obtain:

r(T )(T → T1) = log
(
Fj→1
F1

)
+ fj (̇T → Tj) ,

where we used the property of the logarithm log(a · b) = log(a) + log(b). We can further simplify
this expression by using equation (3) for j → 1 to give:

r(T )(T → T1) = rj→1
(
Tj→1 → T1

)
+ fj (̇T → Tj) ,
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Tenor Maturity Forw. Price rj (%) sj (%) zj (%)
1D 2024-10-23 66,983.88 9.96 24.35 9.96
2D 2024-10-24 67,002.16 9.96 17.16 9.96
3D 2024-10-25 67,020.44 9.96 14.76 9.96
1W 2024-10-29 67,093.63 9.96 12.02 9.96
2W 2024-11-05 67,223.67 10.05 11.06 10.03
3W 2024-11-12 67,355.16 10.10 10.77 10.08
1M 2024-11-21 67,524.59 10.13 10.59 10.11
2M 2024-12-21 68,096.86 10.20 10.43 10.19
3M 2025-01-21 68,618.68 9.78 9.94 9.78
6M 2025-04-22 70,110.56 9.19 9.28 9.20
9M 2025-07-22 71,598.84 8.93 9.00 8.94
1Y 2025-10-22 73,140.93 8.81 8.86 8.82

Table 4: Tenor values of the node forward-starting projection rates rj ’s, the forward rates fj ’s,
the zero-maturity projection rates zj ’s, and spot-index projection rates sj ’s, for maturities dates
computed for tenors of 1-day, 2-day, 3-day, 1-week, 2-weeks, 3-weeks, 1-month, 2-months, 3-
months, 6-months, 9-months, and 1-year.

which finally yields

r(T ) = rj→1 ·
Tj→1 → T1
T → T1

+ fj ·
T → Tj
T → T1

for Tj→1 ↓ T ↓ Tj . (8)

This equation provides the time-dependent forward-starting projection-rate function r(T ) in terms
of the projection rates rj ’s and the forward rates fj ’s.

With the above definitions for the extrapolation of F (T ) and equation (6) for the interpolation
of the forward prices between nodes, we can compute the expected forward price at any future
date. For example in table 4 we lists the forward prices and all projection rates for maturities
dates computed for tenors of 1-day, 2-day, 3-day, 1-week, 2-weeks, 3-weeks, 1-month, 2-months,
3-months, 6-months, 9-months, and 1-year. In figure 2 we plot the forward prices listed in table
4. Similarly in figure 3 we plot the projection rates r(T )’s for the same maturities.

When computing the (risk-neutral) values of derivatives at a specific date, we can use the
projection rates to determine the expected forward prices. However, since the time to the maturity
T1 changes at all instants in time, we cannot use the forward-starting projection rates at a di!erent
date/time from the one at which they were computed. In order to overcome this limitation, we
introduce the concept of zero-maturity projection rates in the next section.

4 Zero Maturity Basis and Zero Maturity Projection Rates
In section 2, we elaborate on the concept of basis for perpetual contracts. In this section, we

expand on the same concept for futures contracts. The discussion for futures contract basis is
important for scenarios such as:

1. Employing futures in a strategy alongside the spot price.

2. Incorporating futures in a strategy with a perpetual contracts.

3. In the absence of perpetual contracts, substituting a perpetual contract with the shortest-
maturity futures.

We first introduce the concept of nearest-futures basis, which is the basis defined using the
next-expiry contract. Then we define the zero-maturity futures quote, which is the projection of
the first-maturity quote to the current time.
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Figure 2: Plot of the forward prices computed using the data of table 4. Note that the tenor
spacings are not drawn to scale of the actual time between nodes.

4.1 Nearest futures basis
We notice in the market data of table 1 that the index associated with futures contracts on the

same underlying asset is not the same for all futures contracts. This is due the technicalities of the
index computation, which may involve a weighted average of spot prices on di!erent exchanges.
Therefore, at any given time t, we define the median index price It as the median of the index
prices of all futures contracts. For example in table 1 the median index price is It = 66, 939.20.

Then we define the nearest-futures multiplicative basis as

Bf1
t =

F1
It
→ 1 . (9)

In the symbol of basis the superscript f1 reminds us that the basis is defined using F1 as reference
quote.

By inverting equation (9), we can express the first-maturity futures quote in terms of the
corresponding basis:

F1 = It ·
(
1 + Bf1

t

)
. (10)

We substitute F1 from this expression into equation (5) to obtain the projection rate function in
terms of the nearest-futures basis and F (T ):

F (T ) = It ·
(
1 + Bf1

t

)
· ep(T )(T→T1) . (11)

Note that it is not possible to compare di!erent values of the nearest-futures basis at di!erent
dates, because the time to next expiry T1 is not constant. We solve this problem in the next
subsection by creating the zero-maturity futures basis.

4.2 The zero-maturity projection rate
In an attempt to remove the dependence from varying time-to-next-expiry T1, we project the

first-maturity quote F1 to the current time t. We can think the current time t as the virtual
maturity time of the zero node, i.e. we can set T0 = t. Therefore we define the zero-maturity
futures virtual quote F0 as,

F0 = F1 e
→r1(T1→t) , (12)
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where we recall that, by definition, r1 = r2. We then invert this equation to find an expression for
F1 in terms of F0:

F1 = F0 e
r1(T1→T0) . (13)

This equation states that the first-maturity futures quote F1 is the projection of the zero-maturity
futures quote F0 from the zero-node T0 to the first node T1 using the forward-starting projection
rate r1.

At this point we substitute F1 from expression (13) into equation (5). In this way we obtain:

F (T ) = F0 e
r1(T1→t)+r(T )(T→T1) ,

so that
F (T ) = F0 e

z(T )(T→t) , (14)

where the zero-maturity projection-rate function z(T ) is defined as

z(T ) =
r1 (T1 → t) + r(T )(T → T1)

T → t . (15)

Note that, in going from r(T ) to z(T ), we have removed the dependence from the forward-starting
projection rate r1, in this way we can compare z(T ) at di!erent dates for any given constant
maturity T .

We compute the zero-maturity projection rate at the node dates Tj , where we have r(Tj) = rj ,
i.e.:

z(Tj) = r1 ·
T1 → t
Tj → t

+ rj ·
Tj → T1
Tj → t

, (16)

which simplifies to z(T1) = r1 for j = 1. For j > 1 equation (16) states that the zero-maturity
projection rate at the node dates is equal to the weighted average of r1 and rj with weights
proportional to the distance of Tj from t.

4.3 The zero-maturity futures basis
The value of F0 defined in equation (12) can be viewed as the unbiased quote of an hypothetical

futures contract that is about to expire immediately, i.e. at time T0. In a perfectly e"cient market
with no arbitrage, the value of F0 should be close to the spot index quote It . I.e. we expect to
have

F0 ↔ It .

In reality this isn’t always the case and there might exist persistent di!erences between F0 and It .
In order to measure this di!erence we define the zero-maturity futures basis Bz

t is as:

Bz
t =
F0
It
→ 1 . (17)

We invert this expression to obtain the the zero-maturity futures quote F0 in terms of the
median index price It and the zero-maturity futures basis:

F0 = It · (1 + Bz
t ) . (18)

We substitute F0 from this expression into equation (14) to obtain

F (T ) = It · (1 + Bz
t ) · ez(T )(T→t) . (19)

This equation is the major result of this paper and provides a functional form for the projected
forward price in terms of the zero-maturity projection rate and the zero-maturity futures basis.
Note how both Bz and z can be either observed/computed directly from market data, or simulated
in risk scenarios. However, while the zero-maturity projection rate z(T ) is a good candidate for an
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Figure 3: Term structure of interpolated projection rates listed in table 4 and plotted in figure 2.
Note that the tenors spacing are not drawn to scale of the actual time in between.

invariant to be used in risk simulations, the zero-maturity futures basis Bz
t must be larger than -1.

Hence, Bz
t is not an invariant, while log (1 + Bz

t ) could be used as an invariant.
With the market data of table 1 we can compute the zero-maturity quote F0 to be 66965.60

and the zero-maturity futures basis Bz
t to be 3.94 basis points.

Finally we remark that in order to compute the zero-maturity projection curve z(T ) at all
maturities T , we need at least two futures quotes, i.e. F1 and F2. For consistency we also requires
at least two observations of the index price.

5 Spot Index Projection Rates
Equation (19) provides an expression for the market expectation of the forward price F (T )

starting from the median index quote It , modified by the multiplicative zero-maturity futures basis,
and capitalized by the zero-maturity projection rate. This expression should be used, for example,
when evaluating a portfolio of futures contracts held both in long and short positions.

One thing to note in expression (19) is that the di!erence between the median index quote It
and the zero-maturity futures F0 is observed instantaneously at every time t. In the environment of
stochastic models, this di!erence could be modeled as a jump process that happens instantaneously
after time t. This jump process is not included in the zero-maturity projection rate z(T ), which
could be derived by a continuous-time process. Hence we need to derive a definition of a projection
rate that can be used in stochastic models that do not allow jumps. For example the Black-Scholes
model, traditionally used in option pricing, does not allows for jumps at any point in time and uses
a continuous-time process to model the evolution of the underlying asset.

In order to obtain a projection rate that can be used in stochastic models without jumps we
introduce the spot-index projection rate s(T ) so that

F (T ) = It · es(T )(T→t) . (20)

Substituting F (T ) from this expression into equation (19) we obtain:

It · es(T )(T→t) = It · (1 + Bz
t ) · ez(T )(T→t) ,

which can be simplified to yield:
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s(T ) =
log (1 + Bz

t )

T → t + z(T ) . (21)

This equation is another important result of this paper and provides a relationship between the
zero-maturity basis and the zero-maturity projection rates and the spot-index projection rates.
Notice that if the zero-maturity rate z(T ) is an invariant, as mentioned earlier, since log(1 + Bz

t )
is also an invariant so is the spot-index projection rate s(t).

It is easy to see from equation (21) that when the zero-maturity futures basis Bz
t is zero we

simply have:
s(T ) = z(T ) ,

i.e., the spot-index projection rate equals the zero-maturity projection rate. Also, for asymptotically
large T the two definitions of projection rates converge to the same value, i.e.:

lim
T↑↓

s(T )

z(T )
= 1 .

We stress again how the spot-index projection rate s(T ) should be used, for example, in the
Black-Scholes model when pricing options. Given the futures quotes Fj ’s and the median index
price It we can compute the spot-index projection rates s(Tj)’s at the maturity dates Tj ’s:

sj = s(Tj) =
1

Tj → t
· log

(
Fj
It

)
for all j = 1, . . . , n . (22)

The values of the spot-index projection rate at the maturity nodes can computed from the
market data of table 1 are reported in table 3 and plotted in figure 1. The spot-index projection
rate at fixed tenor maturities is listed in table 4 and plotted in figure 3. It can be noticed from
both the tables and the figures that for short maturities the second term in equation (21) tends
to become large. This fact happens because for smaller and smaller maturities we are trying to
squeeze the jump variation of the basis term into a rate proportional to T → t.

6 Conclusions
This study explored the financial variables associated with perpetual and futures contracts.

The basis for perpetual contracts was examined by comparing the index price and perpetual
contract quotes. The discussion then moved to futures contracts, introducing the concept of
forward-starting projection rates to model price expectations across di!erent maturity points. We
complemented this rate by introducing the nearest-futures basis. We then defined an interpola-
tion/extrapolation policy that allowed us to compute the forward-starting projection rates for fixed
tenors, useful for risk simulations.

While the forward-starting projection rates are useful for pricing derivatives, they are not suitable
for risk simulations. In order to define a basis and a curve that can also be used in risk simulations we
introduced the zero-maturity futures basis an the zero-maturity projection rate. We then switched
to the spot-index projection rate, which is a rate that can be used in stochastic models that do not
allow jumps and we showed how it can be computed from the zero-maturity futures basis and the
zero-maturity projection rate.

For all the rates and basis introduced we showed how they can be computed from the market
data of table 1 and we provided the numerical values for the rates and basis in table 3.

In conclusion, the concepts introduced in this paper are crucial for the e!ective management
of a portfolio of linear digital assets. Finally, the study was performed using the Talos portfolio
management software, which provides a comprehensive set of tools for managing digital asset
portfolios.
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